Advertisement

Biological Invasions

, Volume 16, Issue 5, pp 967–976 | Cite as

Adaptation mechanisms and ecological consequences of seaweed invasions: a review case of agarophyte Gracilaria vermiculophylla

  • Zi-Min Hu
  • Lopez-Bautista Juan
Perspectives and Paradigms

Abstract

To prioritize management, conservation and restoration from seaweed invasions, it is important for policy-makers to elucidate the ecological mechanisms during the three phases of invasion: introduction, establishment, and diffusion. In this review, we synthesize the current knowledge of the invasion mechanisms and ecological impacts of Gracilaria vermiculophylla, a red agarophyte native to Asia Northwest Pacific, which now has become a rapid and successful coastal invader in the Atlantic and Eastern Pacific Oceans. Eco-physiological and chemical studies have revealed that some ecological traits, including survival in dark condition (e.g. the ballast water), tolerance to grazing and extreme salinities and temperatures, insensitive to UVR and light intensity and nutrient levels, adaptation to a wide diversity of habitats, and chemical defense to potential predators, may provide G. vermiculophylla an unmatched advantage during its global invasion. The rapid growth, flexible reproduction through fragmentation, efficient recruitment on hard substratum, seeding success on various vectors, and interaction with local community organisms may also contribute to its rapid increase in abundance and effects on the invaded coastal ecosystems. G. vermiculophylla showed both negative and positive impacts to the marine ecosystems through changing interspecific competition, increasing habitat diversity, altering the community complex, and transforming biogeochemical cycles and estuarine food webs. Future surveys such as marine exotic genomics, transcriptome sequencing and epigenetic variation between native and invasive entities may provide insightful promise on molecular mechanisms of seaweed invasion.

Keywords

Ecological consequences Gracilaria vermiculophylla Habitat modifier Invasion mechanisms Seaweed 

Notes

Acknowledgments

We thank everyone who shared with us observations from both experimental and field surveys. We are grateful to two anonymous reviewers for their valuable and constructive comments on the original version of the manuscript. This work was supported by National Natural Science Foundation of China (No. 31000103) granted to Z. M. Hu, and by the US National Science Foundation Assembling the Tree of Life Program (DEB-1036495, DEB-0937978) granted to JMLB.

References

  1. Abreu MH, Pereira R, Sousa-Pinto I, Yarish C (2011a) Nitrogen uptake response of Gracilaria vermiculophylla (Ohmi) Papenfuss under combined and single addition of nitrate and ammonium. J Exp Mar Biol Ecol 407:190–199CrossRefGoogle Scholar
  2. Abreu MH, Pereira R, Sousa-Pinto I, Yarish C (2011b) Ecophysiological studies of the non-indigenous species Gracilaria vermiculophylla (Rhodophyta) and its abundance patterns in Ria de Aveiro lagoon, Portugal. Eur J Phycol 46:453–464CrossRefGoogle Scholar
  3. Adam P (1990) Salt marsh ecology. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  4. Auffrey LM, Robinson SMC, Barbeau MA (2004) Effect of green macroalgal mats on burial depth of soft-shelled clams Mya arenaria. Mar Ecol Prof Ser 278:193–203CrossRefGoogle Scholar
  5. Barbara I, Cremades J, Calvo S, Lopez-Rodriguez MC, Dosil J (2005) Check-list of the benthic marine and brackish Galician algae (NW Spain). An Jard Bot Madr 62:69–100CrossRefGoogle Scholar
  6. Bellorin AM, Oliveira MC, Oliveira EC (2004) Gracilaria vermiculophylla: a western Pacific species of Gracilariaceae (Rhodophyta) first recorded from the eastern Pacific. Phycol Res 52:69–79CrossRefGoogle Scholar
  7. Berke SK (2012) Biogeographic variability in ecosystem engineering: patterns in the abundance and behavior of the tube-building polychaete Diopatra cuprea. Mar Ecol Prog Ser 447:1–13CrossRefGoogle Scholar
  8. Bond DM, Finnegan EJ (2007) Passing the message on: inheritance of epigenetic traits. Trend Plant Sci 12:211–216CrossRefGoogle Scholar
  9. Bonsdorff E (1992) Drifting algae and zoobenthos—effects on settling and community structure. Neth J Sea Res 30:57–62CrossRefGoogle Scholar
  10. Byers JE, Gribben PE, Yeager C, Sotka EE (2012) Impacts of an abundant introduced ecosystem engineer within mudflats of the southeastern US coast. Biol Invasions 14:2587–2600CrossRefGoogle Scholar
  11. Cacabelos E, Engelen AH, Mejia A, Arenas F (2012) Comparison of the assemblage functioning of estuary systems dominated by the seagrass Nanozostera noltii versus the invasive drift seaweed Gracilaria vermiculophylla. J Sea Res 72:99–105CrossRefGoogle Scholar
  12. Chelaifa H, Mahe F, Ainouche M (2010) Transcriptome divergence between the hexaploid salt-marsh sister species Spartina maritima and Spartina alterniflora (Poaceae). Mol Ecol 19:2050–2063PubMedCrossRefGoogle Scholar
  13. Costanza R, d’Arge R, de Groot R, Farber S, Grasso M, Hannon B (1997) The value of the world’s ecosystem services and natural capital. Nature 387:253–260CrossRefGoogle Scholar
  14. Crooks JA, Khim HS (1999) Architectural vs. biological effects of a habitat-altering, exotic mussel, Musculista senhousia. J Exp Mar Biol Ecol 240:53–75Google Scholar
  15. Cullis CA (2005) Mechanisms and control of rapid genomic changes inflax. Ann Bot (London) 95:201–206CrossRefGoogle Scholar
  16. De Carvalho JF, Poulain J, Silva CD, Wincker P, Michon-Coudouel S, Dheilly A, Naquin D, Boutte J, Salmon A, Ainouche M (2013) Transcriptome de novo assembly from next-generation sequencing and comparative analyses in the hexaploid salt marsh species Spartina maritima and Spartina alterniflora (Poaceae). Heredity 110:181–193CrossRefGoogle Scholar
  17. Farrell P, Fletcher RL (2006) An investigation of dispersal of the introduced brown alga Undaria pinnatifida (Harvey) Suringar and its competition with some species on the manmade structures of Torquay Marina (Devon, UK). J Exp Mar Biol Ecol 334:236–243CrossRefGoogle Scholar
  18. Freshwater DW, Montgomery F, Greene JK, Hamner RM, Williams M, Whitfield PE (2006) Distribution and identification of an invasive Gracilaria species that is hampering commercial fishing operations in southeastern North Carolina, USA. Biol Invasions 8:631–637CrossRefGoogle Scholar
  19. Guillemin ML, AitAkki S, Givernaud T, Mouradi A, Valeo M, Destombe C (2008) Molecular characterization and development of rapid molecular methods to identify species of Gracilariaceae from the Atlantic coast of Morocco. Aquat Bot 89:324–330CrossRefGoogle Scholar
  20. Harley CDG, Hughes AR, Hultgren KM, Miner BG, Sorte CJB, Thornber CS, Rodriguez LF, Tomanek L, Williams SL (2006) The impacts of climate change in coastal marine systems. Ecol Lett 9:228–241PubMedCrossRefGoogle Scholar
  21. Henikoff S (2005) Rapid changes in plant genomes. Plant Cell 17:2852–2855PubMedCentralPubMedCrossRefGoogle Scholar
  22. Hewitt CL, Campbell ML, Schaffelke B (2007) Introduction of seaweeds: accidental transfer pathways and mechanisms. Bot Mar 50:326–337CrossRefGoogle Scholar
  23. Inderjit Chapman D, Ranelletti M, Kaushik S (2006) Invasive marine algae: an ecological perspective. Bot Rev 72:153–178CrossRefGoogle Scholar
  24. Jensen AT, Uldahl AG, Sjogren KP, Khan M (2007) The invasive macroalgae Gracilaria vermiculophylla—effects of salinity, nitrogen availability, irradiance and grazing on the growth rate. Master thesis, Department of Environmental, Social and Spatial Change, Roskilde University, DenmarkGoogle Scholar
  25. Johnston CA, Lipcius RN (2012) Exotic macroalga Gracilaria vermiculophylla provides superior nursery habitat for native blue crab in Chesapeake Bay. Mar Ecol Prog Ser 467:137–146CrossRefGoogle Scholar
  26. Kim JK, Kovtun K, Yarish C (2012) Tolerance to hypo-osmotic stress and low temperature determines the spread of non-indigenous Gracilaria vermiculophylla. J Phycol 48:S46CrossRefGoogle Scholar
  27. Kronvang B, Aertebjerg G, Grant R, Kristensen P, Hovmand M, Kirkegaard J (1993) Nationwide monitoring of nutrients and their ecological effects—state of the Danish aquatic environment. Ambio 22(4):176–187Google Scholar
  28. Lambert WJ, Levin PS, Berman J (1992) Changes in the structure of a New England (USA) kelp bed: the effects of an introduced species? Mar Ecol Prog Ser 88:303–307CrossRefGoogle Scholar
  29. Lawson SE, McGlathery KJ, Wiberg PL (2012) Enhancement of sediment suspension and nutrient flux by benthic macrophytes at low biomass. Mar Ecol Prog Ser 448:259–270CrossRefGoogle Scholar
  30. Lippson AJ, Lippson RL (1997) Life in the Chesapeake Bay. The John Hopkins University Press, BaltimoreGoogle Scholar
  31. Lobban CS, Harrison PJ (1997) Seaweed ecology and physiology. Cambridge University Press, CambridgeGoogle Scholar
  32. Madsen JD, Chambers PA, James WF, Koch EW, Westlake DF (2001) The interaction between water movement, sediment dynamics and submersed macrophytes. Hydrobiologia 444:71–84CrossRefGoogle Scholar
  33. Martínez-Lüscher J, Holmer M (2010) Potential effects of the invasive species Gracilaria vermiculophylla on Zostera marina metabolism and survival. Mar Environ Res 69:345–349PubMedCrossRefGoogle Scholar
  34. Meyercordt J, Gerbersdorf S, Meyer-Reil LA (1999) Significance of pelagic and benthic primary production in two shallow coastal lagoons of different degrees of eutrophication in the southern Baltic Sea. Aquat Microb Ecol 20(3):273–284CrossRefGoogle Scholar
  35. Nejrup LB, Pedersen MF (2012) The effect of temporal variability in salinity on the invasive red alga Gracilaria vermiculophylla. Eur J Phycol 47:254–263CrossRefGoogle Scholar
  36. Nettleton JC, Mathieson AC, Thornber C, Neefus CD, Yarish C (2013) Introductions of Gracilaria vermiculophylla (Rhodophyta, Gracilariales) to New England, USA: estimated arrival times and current distribution. Rhodora 115:28–41CrossRefGoogle Scholar
  37. Newton C, Bracken MES, McConville M, Rodrigue K, Thornber CS (2013a) Invasion of the red seaweed Heterosiphonia japonica spans biogeographic provinces in the western North Atlantic Ocean. PLoS ONE 8(4):e62661CrossRefGoogle Scholar
  38. Newton C, Guidone M, Thornber CS (2013b) Impacts of invasive Gracilaria vermiculophylla on the reproductive ecology of native benthic invertebrates. SICB Annual Meeting 2013, January 3–7, 2013, San Francisco, CA, USAGoogle Scholar
  39. Nyberg CD (2007) Introduced marine macroalgae and habitat modifiers: the ecological role and significant attributes. Doctoral thesis, Department of Marine Ecology, Goteborg University, Goteborg, SwedenGoogle Scholar
  40. Nyberg CD, Wallentinus I (2005) Can species traits be used to predict marine macroalgal introductions? Biol Invasions 7:265–279CrossRefGoogle Scholar
  41. Nyberg CD, Wallentinus I (2009) Long-term survival of an introduced red alga in adverse conditions. Mar Biol Res 5:304–308CrossRefGoogle Scholar
  42. Nyberg CD, Thomsen MS, Wallentinus I (2009) Flora and fauna associated with the introduced red alga Gracilaira vermiculophylla. Eur J Phycol 44:395–403CrossRefGoogle Scholar
  43. Nylund GM, Weinberger F, Rempt M, Pohnert G (2011) Metabolomic assessment of induced and activated chemical defence in the invasive red alga Gracilaria vermiculophylla. PLoS ONE 6(12):e29359PubMedCentralPubMedCrossRefGoogle Scholar
  44. Ohmi H (1956) Contributions to the Knowledge of Gracilariaceae from Japan, II: on a new species of the genus Gracilariopsis, with some considerations on its ecology. Bull Fac Fish Hokkaido Univ 6:271–279Google Scholar
  45. Orth RJ, Olyarnik S, Short FT, Waycott M, Williams SL, Carruthers TJB, Dennison WC, Duarte CM, Fourquerean JW, Heck KL, Hughes RA, Kendrick GA, Kenworthy JW (2006) A global crisis for seagrass ecosystems. Bioscience 56(12):987–996CrossRefGoogle Scholar
  46. Pérez JE, Nirchio M, Alfonsi C, Munoz C (2006) The biology of invasions: the genetic adaptation paradox. Biol Invasions 8:1115–1121CrossRefGoogle Scholar
  47. Pinon-Gimate A, Serviere-Zaragoza E, Ochoa-Izaguirre MJ, Páez-Osuna F (2008) Species composition and seasonal changes in macroalgal blooms in lagoons along the southeastern Gulf of California. Bot Mar 51:112–123CrossRefGoogle Scholar
  48. Prentis PJ, Wilson JRU, Dormontt EE, Richardson DM, Lowe AJ (2008) Adaptive evolution in invasive species. Trends Plant Sci 13:288–294PubMedCrossRefGoogle Scholar
  49. Prentis PJ, Woolfit M, Thomas-Hall SR, Ortiz-Barrientos D, Pavasovic A, Lowe AJ, Schenk PM (2010) Massive lyparallel sequencing and analysis of expressed sequence tags in a successful invasive plant. Ann Bot (London) 106:1009–1017CrossRefGoogle Scholar
  50. Raikar S, Iima M, Fujita Y (2001) Effect of temperature, salinity and light intensity on the growth of Gracilaria spp. (Gracilariales, Rhodophyta) from Japan, Malaysia and India. Indian J Mar Sci 30:98–104Google Scholar
  51. Rempt M, Weinberger F, Grosser K, Phnert G (2012) Conserved and species-specific oxylipin pathways in the wound-activated chemical defense of the noninvasive red alga Gracilaria chilensis and the invasive Gracilaria vermiculophylla. Beilstein J Org Chem 8:283–289PubMedCentralPubMedCrossRefGoogle Scholar
  52. Roleda MY, Nyberg CD, Wulff A (2012) UVR defense mechanisms in eurytopic and invasive Gracilaria vermiculophylla (Gracilariales, Rhodophyta). Physiol Plantarum 146:205–216CrossRefGoogle Scholar
  53. Rueness J (2005) Life histories and molecular sequences of Gracilaria vermiculophylla. Phycologia 44:120–128CrossRefGoogle Scholar
  54. Sakai AK, Allendorf FW, Holt JS, Lodge DM, Molofsky J, With KA, Baughman S, Cabin RJ, Cohen JE, Ellstrand NC, McCauley DE, O’Neil P, Parker IM, Thompson JN, Weller SG (2001) The population biology of invasive species. Ann Rev Ecol Syst 32:305–332CrossRefGoogle Scholar
  55. Saunders GW (2009) Routine DNA barcoding of Canadian Gracilariales (Rhodophyta) reveals the invasive species Gracilaria vermiculophylla in British Columbia. Mol Ecol Res 9:141–150CrossRefGoogle Scholar
  56. Schaffelke B, Smith JE, Hewitt CL (2006) Introduced macroalgae—a growing concern. J Appl Phycol 18:529–541CrossRefGoogle Scholar
  57. Schrey AW, Coon CAC, Grispo MT, Award M, Imboma T, McCoy ED, Mushinsky HR, Richard CL, Martin LB (2012) Epigenetic variation may compensate for decreased genetic variation with introductions: a case study using house sparrows (Passer domesticus) on two continents. Genet Res Int doi: 10.1155/2012/979751
  58. Sfriso A, Maistro S, Andreoli C, Moro I (2010) First record of Gracilaria vermiculophylla (Gracilariales, Rhodophyta) in the Po Delta Lagoons, Mediterranean Sea (Italy). J Phycol 46:1024–1027CrossRefGoogle Scholar
  59. Staehr PA, Pedersen MF, Thomsen MS, Wernberg T, Krause-Jensen D (2000) Invasion of Sargassum muticum in Limfjorden (Denmark) and its possible impact on the indigenous macroalgal community. Mar Ecol Prog Ser 207:79–88CrossRefGoogle Scholar
  60. Teso SV, Bigatti G, Casas GN, Piriz ML, Penchaszadeh PE (2009) Do native grazers from Patagonia, Argentina, consume the invasive kelp Undaria pinnatifida? Rev Mus Argentino Cienc Nat 11(1):7–14Google Scholar
  61. Thomsen MS (2010) Experimental evidence for positive effects of invasive seaweed on native invertebrates via habitat-formation in a seagrass bed. Aquat Invasions 5:341–346CrossRefGoogle Scholar
  62. Thomsen MS, McGlathery KJ (2005) Facilitation of macroalgae by the sedimentary tube forming polychaete Diopatra cuprea. Estuar Coast Shelf Sci 62:63–73CrossRefGoogle Scholar
  63. Thomsen MS, McGlathery KJ (2007) Stress tolerance of the invasive macroalgae Codium fragile and Gracilaria vermiculophylla in a soft-bottom turbid lagoon. Biol Invasions 9:499–513CrossRefGoogle Scholar
  64. Thomsen MS, Gurgel CFD, Fredericq S, McGlathery KJ (2005) Gracilaria vermiculophylla (Rhodophyta, Gracilariales) in Hog Island Bay, Virginia: a cryptic alien and invasive macroalga and taxonomic correction. J Phycol 42:139–141CrossRefGoogle Scholar
  65. Thomsen MS, Mcglathery KJ, Tyler AC (2006) Macroalgal distribution patterns in a shallow, soft-bottom lagoon, with emphasis on the non-native Gracilaria vermiculophylla and Codium fragile. Estuar Coast 29:465–473Google Scholar
  66. Thomsen MS, Stehr P, Nyberg CD, Krause-Jensen D, Schwaeter S, Silliman BR (2007) Gracilaria vermiculophylla in northern Europe, with focus on Denmark, and what to expect in the future. Aquat Invasions 3:1–12Google Scholar
  67. Thomsen MS, Wernberg T, Tuya F, Silliman BR (2009a) Evidence for impacts of nonindigenous macroalgae: a meta-analysis of experimental field studies. J Phycol 45(4):812–819CrossRefGoogle Scholar
  68. Thomsen MS, McGlathery KJ, Schartschild A, Silliman BR (2009b) Distribution and ecological role of the nonnative macroalga Gracilaria vermiculophylla in Virginia salt marshes. Biol Invasions 11:2303–2316CrossRefGoogle Scholar
  69. Tyler AC, McGlathery KJ (2006) Uptake and release of nitrogen by the macroalgae Gracilaria vermiculophylla (Rhodophyta). J Phycol 42:515–525CrossRefGoogle Scholar
  70. Tyler AC, McGlathery KJ, Macko SA (2005) Uptake of urea and amino acids by the macroalgae Ulva lactuca (Chlorophyta) and Gracilaria vermiculophylla (Rhodophyta). Mar Ecol Prog Ser 294:161–172CrossRefGoogle Scholar
  71. Weinberger F, Buchholz B, Karez R, Wahl M (2008) The invasive red alga Gracilaria vermiculophylla in the Baltic Sea: adaptation to brackish water may compensate for light limitation. Aquat Biol 3:251–264CrossRefGoogle Scholar
  72. Williams SL, Smith JE (2007) A global review of the distribution, taxonomy, and impacts of introduced seaweeds. Ann Rev Ecol Syst 38:327–359CrossRefGoogle Scholar
  73. Yokoya NS, Kakita H, Obika H, Kitamura T (1999) Effects of environmental factors and plant growth regulators on growth of the red alga Gracilaria vermiculophylla from Shikoku Island, Japan. Hydrobiologia 399:339–347Google Scholar
  74. Yoshida T, Yoshinaga K, Nkajima Y (1995) Check list of marine algae of Japan. Jpn J Phycol 43:115–171Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Institute of OceanologyChinese Academy of SciencesQingdaoChina
  2. 2.Department of Biological SciencesThe University of AlabamaTuscaloosaUSA

Personalised recommendations