Biological Invasions

, Volume 15, Issue 10, pp 2347–2358 | Cite as

Effect of invader removal: pollinators stay but some native plants miss their new friend

  • Victoria Ferrero
  • Sílvia Castro
  • Joana Costa
  • Paola Acuña
  • Luis Navarro
  • João Loureiro
Original Paper

Abstract

Removal of invasive species often benefits biological diversity allowing ecosystems’ recovery. However, it is important to assess the functional roles that invaders may have established in their new areas to avoid unexpected results from species elimination. Invasive animal-pollinated plants may affect the plant–pollination interactions by changing pollinator availability and/or behaviour in the community. Thus, removal of an invasive plant may have important effects on pollinator community that may then be reflected positive or negatively on the reproductive success of native plants. The objective of this study was to assess the effect of removing Oxalis pes-caprae, an invasive weed widely spread in the Mediterranean basin, on plant–pollinator interactions and on the reproductive success of co-flowering native plants. For this, a disturbed area in central Portugal, where this species is highly abundant, was selected. Visitation rates, natural pollen loads, pollen tube growth and natural fruit set of native plants were compared in the presence of O. pes-caprae and after manual removal of their flowers. Our results showed a highly resilient pollination network but also revealed some facilitative effects of O. pes-caprae on the reproductive success of co-flowering native plants. Reproductive success of the native plants seems to depend not only on the number and diversity of floral visitors, but also on their efficiency as pollinators. The information provided on the effects of invasive species on the sexual reproductive success of natives is essential for adequate management of invaded areas.

Keywords

Biological invasions Competition Facilitation Mutualistic relationships Oxalis pes-caprae Plant–pollinator networks 

Notes

Acknowledgments

The authors thank D. Rojas for helping in network analysis, J. Memmott for kindly sharing network drawing codes, and A. Vale and R. Heleno for their helpful discussion of the manuscript. We also thank the COI herbarium (University of Coimbra) for allowing voucher specimens examination and Prof. J. Delgado Domingos and R. Trancoso (METEO-IST group, University of Lisbon, Portugal) for climate data supply. This work is financed by FEDER funds through the COMPETE Program and by Portuguese Foundation for Science and Technology (FCT) funds in the ambit of the project PTDC/BIA-BIC/110824/2009, by CRUP Acções Integradas Luso-Espanholas 2010 with the project E10/10, by MCI-Programa de Internacionalización de la I + D (PT2009-0068) and by the Spanish DGICYT (CGL2009-10466), FEDER funds from the European Union, and the Xunta de Galicia (INCITE09-3103009PR). FCT also supported the work of S. Castro (FCT/BPD/41200/2007) and J. Costa (CB/C05/2009/209; PTDC/BIA-BIC/110824/2009). The work of V. Ferrero was supported by the Fundación Ramón Areces.

Supplementary material

10530_2013_457_MOESM1_ESM.docx (19 kb)
Supplementary material 1 (DOCX 18 kb)
10530_2013_457_MOESM2_ESM.docx (20 kb)
Supplementary material 2 (DOCX 19 kb)

References

  1. Aizen M, Morales C, Morales J (2008) Invasive mutualists erode native pollination webs. PLoS Biol 6(2):e31PubMedCrossRefGoogle Scholar
  2. Akhalkatsi M, Pfauth M, Calvin CL (1999) Structural aspects of ovule and seed development and nonrandom abortion in Melilotus officinalis (Fabaceae). Protoplasma 108:211–223CrossRefGoogle Scholar
  3. Almeida-Neto M, Guimaraes P, Guimaraes PR, Loyola RD, Ulrich W (2008) A consistent metric for nestedness analysis in ecological systems: reconciling concept and measurement. Oikos 117:1227–1239CrossRefGoogle Scholar
  4. Bartomeus I, Bosch J, Vilà M (2008a) High invasive pollen transfer, yet low deposition on native stigmas in a Carpobrotus-invaded community. Ann Bot 10:417–424CrossRefGoogle Scholar
  5. Bartomeus I, Vilà M, Santamaría L (2008b) Contrasting effects of invasive plants in plant-pollinator networks. Oecologia 155:761–770PubMedCrossRefGoogle Scholar
  6. Bascompte J, Jordano P, Olesen JM (2006) Asymmetric coevolutionary networks facilitate biodiversity maintenance. Science 312:431–433PubMedCrossRefGoogle Scholar
  7. Bjerknes AL, Totland O, Hegland SJ, Nielsen ACN (2007) Do alien plant invasions really affect pollination success in native plant species? Biol Conserv 138:1–12CrossRefGoogle Scholar
  8. Blüthgen N, Menzel F, Blüthgen N (2006) Measuring specialization in species interaction networks. BMC Ecol 6:9PubMedCrossRefGoogle Scholar
  9. Brandes D (1991) Sociology and ecology of Oxalis pes-caprae L. in the Mediterranean region with special attention to Malta. Phytocoenologia 19:285–306Google Scholar
  10. Brown BJ, Mitchell RJ, Graham SA (2002) Competition for pollination between an invasive species (purple loosestrife) and a native congener. Ecology 83:2328–2336CrossRefGoogle Scholar
  11. Carvalheiro LG, Barbosa ERM, Memmott J (2008) Pollinator networks, alien species and the conservation of rare plants: Trinia glauca as a case study. J Appl Ecol 45:1419–1427CrossRefGoogle Scholar
  12. Castro S, Loureiro J, Santos C, Ater M, Ayensa G, Navarro L (2007) Distribution of flower morphs, ploidy level and sexual reproduction of invasive weed Oxalis pes-caprae in the western area of the Mediterranean Region. Ann Bot 99:507–517PubMedCrossRefGoogle Scholar
  13. Castro S, Ferrero V, Costa J, João Sousa A, Castro M, Navarro L, Loureiro J (2013) Reproductive strategy of the invasive Oxalis pes-caprae: distribution patterns of floral morphs, ploidy levels and sexual reproduction. Biol Invasions. doi:10.1007/s10530-013-0414-2 Google Scholar
  14. Chittka L, Schürkens S (2001) Successful invasion of a floral market. Nature 411:653PubMedCrossRefGoogle Scholar
  15. Conner JK, Rush S, Jennetten P (1996) Measurements of natural selection on floral traits in wild radish (Raphanus raphanistrum) I Selection through lifetime female fitness. Evolution 50:1127–1136CrossRefGoogle Scholar
  16. Costa J (2012) Sexual reproduction of the pentaploid short-styled Oxalis pes-caprae. Msc thesis, Centre for Functional Ecology, Department of Life Sciences, FCTUCGoogle Scholar
  17. Costa J, Ferrero V, Loureiro J, Castro M, Navarro L, Castro S (2013) Sexual reproduction of the pentaploid, short-styled Oxalis pes-caprae allows the production of viable offspring. Plant Biol. doi:10.1111/plb.12010 PubMedGoogle Scholar
  18. Dafni A, Pacini E, Nepi M (2005) Pollen and stigma biology. In: Dafni A, Kevan P, Husband B (eds) Practical pollination biology. Enviroquest, Ontario, pp 83–142Google Scholar
  19. Damanakis M, Markaki M (1990) Studies on the biology of Oxalis pes-caprae L. under field conditions in Crete Greece. Zizaniology 2:145–154Google Scholar
  20. Dietzsch AC, Stanley DA, Stout JC (2011) Relative abundance of an invasive alien plant affects native pollination processes. Oecologia 167:469–479PubMedCrossRefGoogle Scholar
  21. Dormann CF, Fründ J, Blüthgen N, Gruber B (2009) Indices, graphs and null models: analyzing bipartite ecological networks. Open Ecol J 2:7–24CrossRefGoogle Scholar
  22. Feinsinger P (1987) Effects of plant species on each other’s pollination: is community structure influenced? Trends Ecol Evol 2:123–126PubMedCrossRefGoogle Scholar
  23. Flanagan RJ, Mitchell RJ, Knutowski D, Karron JD (2009) Interspecific pollinator movements reduce pollen deposition and seed production in Mimulus ringens (Phrymaceae). Am J Bot 96:809–815PubMedCrossRefGoogle Scholar
  24. Forup ML, Henson KSE, Craze PG, Memmott J (2008) The restoration of ecological interactions: plant-pollinator networks on ancient and restored heathlands. J Appl Ecol 45:742–752CrossRefGoogle Scholar
  25. Galil J (1968) Vegetative dispersal in Oxalis cernua. Am J Bot 55:68–73CrossRefGoogle Scholar
  26. Galloni M, Podda L, Vivarelli D, Cristofolini G (2007) Pollen presentation, pollen-ovule ratios, and other reproductive traits in Mediterranean Legumes (Fam Fabaceae: Subfam Faboideae). Plant Syst Evol 266:147–164CrossRefGoogle Scholar
  27. Castroviejo S (coord gen) (1986–2012) Flora ibérica 1-8, 10-15, 17-18, 21. Real Jardín Botánico, CSIC, MadridGoogle Scholar
  28. Gettys RE, Johnson IJ (1944) The nature and inheritance of sterility in sweet clover, Melilotus officinalis Lam. J Am Soc Agron 36:28–37CrossRefGoogle Scholar
  29. Ghazou J (2004) Alien abduction: disruption of native plant-pollinator interactions by invasive species. Biotropica 36:156–164Google Scholar
  30. Gimeno I, Vilà M, Hulme PE (2006) Are islands more susceptible to plant invasion than continents? A test using Oxalis pes-caprae L. in the western Mediterranean. J Biogeogr 33:1559–1565CrossRefGoogle Scholar
  31. Grabas GP, Laverty TM (1999) The effect of purple loosestrife (Lythrum salicaria L.; Lythraceae) on the pollination and reproductive success of sympatric co-flowering wetland plants. Ecoscience 6:230–242Google Scholar
  32. Guimaraes PR, Guimaraes P (2006) Improving the analyses of nestedness for large sets of matrices. Environ Modell Softw 21:1512–1513CrossRefGoogle Scholar
  33. Guitián J, Guitián P, Navarro L (1996) Spatio-temporal variation in pollination assemblage of Cornus sanguinea. Acta Oecol 17:285–295Google Scholar
  34. Gurusamy C (1999) The pattern of seed formation in cauliflower (Brassica oleracea L. var botrytis) with special reference to seed abortion. Can J Bot 77:1189–1192Google Scholar
  35. Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4:9Google Scholar
  36. Harder LD, Routley MB (2006) Pollen and ovule fates and reproductive performance by flowering plants. In: Harder LD, Barrett SCH (eds) Ecology and evolution of flowers. Oxford University Press, Oxford, pp 61–80Google Scholar
  37. Jakobsson A, Padrón B, Traveset A (2009) Competition for pollinators between invasive and native plants: effects of spatial scale of investigation (note). Ecoscience 16:138–141CrossRefGoogle Scholar
  38. Jordano P (1987) Patterns of mutualistic interactions in pollination and seed dispersal: connectance, dependence asymmetries, and coevolution. Am Nat 129:657–677CrossRefGoogle Scholar
  39. Kaiser-Bunbury CN, Muff S, Memmott J, Müller CB, Caflisch A (2010) The robustness of pollination networks to the loss of species and interactions: a quantitative approach incorporating pollinator behaviour. Ecol Lett 13:442–452PubMedCrossRefGoogle Scholar
  40. King VM, Sargent RD (2012) Presence of an invasive plant species alters pollinator visitation to a native. Biol Invasions 14:1809–1818CrossRefGoogle Scholar
  41. Larson DL, Royerb RA, Royerb MR (2006) Insect visitation and pollen deposition in an invaded prairie plant community. Biol Conserv 130:148–159CrossRefGoogle Scholar
  42. Levine JM, Vilà M, D’Antonio CM, Dukes JS, Grigulis K, Lavorel S (2003) Mechanisms underlying the impacts of exotic plant invasions. Proc R Soc B 270:775–781PubMedCrossRefGoogle Scholar
  43. Lopezaraiza-Mikel ME, Hayes RB, Whalley MR, Memmott J (2007) The impact of an alien plant on a native plant-pollinator network: an experimental approach. Ecol Lett 10:539–550PubMedCrossRefGoogle Scholar
  44. McKinney AM, Goodell K (2011) Plant–pollinator interactions between an invasive and native plant vary between sites with different flowering phenology. Pl Ecol 212:1025–1035CrossRefGoogle Scholar
  45. Memmott J, Waser NM (2002) Integration of alien plants into a native flower-pollinator visitation web. Proc R Soc B 269:2395–2399PubMedCrossRefGoogle Scholar
  46. Memmott J, Waser NM, Price MV (2004) Tolerance of pollination networks to species extinctions. Proc R Soc B 271:2605–2611PubMedCrossRefGoogle Scholar
  47. Mitchell CE, Agrawal AA, Bever JD et al (2006) Biotic interactions and plant invasions. Ecol Lett 9:726–740PubMedCrossRefGoogle Scholar
  48. Mitchell RJ, Flanagan RJ, Brown BJ, Waser NM, Karron JD (2009) New frontiers in competition for pollination. Ann Bot 103:1403–1413PubMedCrossRefGoogle Scholar
  49. Montero-Castaño A, Vilà M (2012) Impact of landscape alteration and invasions on pollinators: a meta-analysis. J Ecol 100:884–893CrossRefGoogle Scholar
  50. Moragues E, Traveset A (2005) Effect of Carpobrotus spp on the pollination success of native plant species of the Balearic Islands. Biol Conserv 122:611–619CrossRefGoogle Scholar
  51. Morales C, Traveset A (2009) A meta-analysis of impacts of alien vs. native plants on pollinator visitation and reproductive success of co-flowering native plants. Ecol Lett 12:716–728Google Scholar
  52. Muñoz AA, Cavieres LA (2008) The presence of a showy invasive plant disrupts pollinator service and reproductive output in native alpine species only at high densities. J Ecol 96:59–467CrossRefGoogle Scholar
  53. Nasrallah JB, Yu S-M, Nasrallah ME (1988) Self-incompatibility genes of Brassica oleracea: expression, isolation, and structure (S locus/transcript localization). Proc R Soc B 85:5551–5555Google Scholar
  54. Olesen J, Jordano P (2002) Geographic patterns in plant-pollinator mutualistic networks. Ecology 83:2416–2424Google Scholar
  55. Padrón B, Traveset A, Biedenweg T, Diaz D, Olesen JM, Nogales M (2009) Impact of invasive species in the pollination networks of two different archipelagos. PLoS One 4:e6275PubMedCrossRefGoogle Scholar
  56. Poisot T, Lepennetier G, Martinez E, Ramsayer J, Hochberg ME (2011a) Resource availability affects the structure of a natural bacteria-bacteriophage community. Biol Lett 7:201–204PubMedCrossRefGoogle Scholar
  57. Poisot T, Bever JD, Nemri A, Thrall PH, Hochberg ME (2011b) A conceptual framework for the evolution of ecological specialisation. Ecol Lett 14:841–851PubMedCrossRefGoogle Scholar
  58. Price MV, Waser NV, Irwin RE, Campbell DR, Brody AK (2005) Temporal and spatial variation in pollination of a montane herb: a seven-year study. Ecology 86:2106–2116CrossRefGoogle Scholar
  59. Pütz N (1994) Vegetative spreading of Oxalis pes-caprae (Oxalidaceae). Pl Syst Evol 191:57–67CrossRefGoogle Scholar
  60. Rathcke B (1983) Competition and facilitation among plants for pollination. In: Real L (ed) Pollination biology. Academic Press, New York, pp 305–329Google Scholar
  61. Richardson DM, Allsopp N, D’Antonio CM, Milton SJ, Rejmánek M (2000) Plant invasions-the role of mutualisms. Biol Rev 75:65–93PubMedCrossRefGoogle Scholar
  62. Romero Zarco C (1999) Vicia L. In: Castroviejo S (ed) Flora Iberica: plantas vasculares de la Península Iberica e islas Baleares. Real Jardín Botánico, Madrid, pp 360–417Google Scholar
  63. Roubik DW (2001) Ups and downs in pollinator populations: when is there a decline? Conserv Ecol 5:2Google Scholar
  64. Sampson DR (1964) A one-locus self-incompatibility system in Raphanus raphanistrum. Can J Genet Cytol 6:435–445Google Scholar
  65. SAS Institute (1999) SAS/STAT user’s guide, release, 92nd edn. SAS Institute Inc., Cary, NCGoogle Scholar
  66. Soler A (1983) Revisión de las especies de Fumaria de la Península Ibérica e Islas Baleares. Lagascalia 11:141–228Google Scholar
  67. Totland O, Nielsen A, Bjerknes A-L, Ohlson M (2006) Effects of an exotic plant and habitat disturbance on pollinator visitation and reproduction in a boreal forest herb. Am J Bot 93:868–873PubMedCrossRefGoogle Scholar
  68. Traveset A, Richardson D (2006) Biological invasions as disruptors of plant reproductive mutualisms. Trends Ecol Evol 21:208–216PubMedCrossRefGoogle Scholar
  69. Tylianakis JM, Laliberté E, Nielsen E, Bascompte J (2010) Conservation of species interaction networks. Biol Conserv 143:2270–2279CrossRefGoogle Scholar
  70. Valdovinos FS, Ramos-Jiliberto R, Flores JD, Espinoza C, López G (2009) Structure dynamics of pollination networks: the role of alien plants. Oikos 118:1190–1200CrossRefGoogle Scholar
  71. Vázquez DP, Melián CJ, Williams NM, Blüthgen N, Krasnov BR, Poulin R (2007) Species abundance and asymmetric interaction strength in ecological networks. Oikos 116:1120–1127Google Scholar
  72. Veitch CR, Clout MN (2002) Turning the tide: the eradication of invasive species. Proceedings of the international conference on eradication of island invasives. IUCN Species Survival Commission, Aukland, NZGoogle Scholar
  73. Vilà M, Bartomeus I, Dietzsch AC, Petanidou T, Steffan-Dewenter I, Stout JC, Tscheulin T (2009) Invasive plant integration into native plant–pollinator networks across Europe. Proc R Soc B 276:3887–3893PubMedCrossRefGoogle Scholar
  74. Vitousek PM (1990) Biological invasions and ecosystem processes: towards an integration of population biology and ecosystem studies. Oikos 57:7–13CrossRefGoogle Scholar
  75. Waser NM, Chittka L, Price MV, Williams NM, Ollerton J (1996) Generalization in pollination systems, and why it matters. Ecology 77:1043–1060CrossRefGoogle Scholar
  76. Wolfram Research (2007) Mathematica Version 60. Wolfram Research, Champaign, ILGoogle Scholar
  77. Zavaleta ES, Hobbs RJ, Mooney HA (2001) Viewing invasive species removal in a whole-ecosystem context. Trends Ecol Evol 16:454–459CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Victoria Ferrero
    • 1
    • 2
  • Sílvia Castro
    • 1
  • Joana Costa
    • 1
  • Paola Acuña
    • 2
  • Luis Navarro
    • 2
  • João Loureiro
    • 1
  1. 1.CFE, Centre for Functional Ecology and Department of Life SciencesUniversity of CoimbraCoimbraPortugal
  2. 2.Department of Plant Biology, Faculty of ScienceUniversity of VigoVigoSpain

Personalised recommendations