Biological Invasions

, Volume 15, Issue 7, pp 1537–1559 | Cite as

Microsatellite population genetics of the emerald ash borer (Agrilus planipennis Fairmaire): comparisons between Asian and North American populations

  • Carson C. KeeverEmail author
  • Christal Nieman
  • Larissa Ramsay
  • Carol E. Ritland
  • Leah S. Bauer
  • D. Barry Lyons
  • Jenny S. Cory
Original Paper


The emerald ash borer (EAB) (Agrilus planipennis Fairmaire) (Coleoptera; Buprestidae), is an invasive wood-boring beetle native to northeast Asia. This species was first detected in Michigan USA in 2002, and is a significant threat to native and ornamental ash tree species (Fraxinus spp.) throughout North America. We characterized seven polymorphic microsatellite markers for EAB and used these to investigate EAB population structure in the early invasive populations within North America and in comparison with Asia. We found 2–9 alleles per microsatellite locus, no evidence of linkage disequilibrium, and no association with known coding sequences, suggesting that these markers are suitable for population genetic analysis. Microsatellite population genetic structure was examined in 48 EAB populations sampled between 2003 and 2008 from five regions, three in the introduced range, Michigan (US) and Ontario and Quebec (Canada) and two Asian regions, China and South Korea, where EAB is native. We found significant genetic variation geographically but not temporally in EAB populations. Bayesian clustering analyses of individual microsatellite genotypes showed strong clustering among multiple North American populations and populations in both China and South Korea. Finally, allelic richness and expected heterozygosity were higher in the native range of EAB, but there was no difference in observed heterozygosity, suggesting a significant loss of alleles upon introduction but no significant change in the distribution of alleles within and among individuals.


Microsatellite Invasive species Genetic diversity Genetic bottleneck 



Microsatellite development and analysis was funded by the Canadian Food Inspection Agency. Additional support was provided by SFU President’s Research start-up grant. We gratefully acknowledge the assistance of G. C. Jones (CFS) in sampling EAB populations in Ontario and Michigan; H. P. Liu (Michigan State University), R. T. Gao and T. H. Zhao (Chinese Academy of Forestry), and D. L. Miller and T. Petrice (USDA FS NRS) for assisting with sampling, rearing, and maintaining EAB samples from China; D. Williams (USDA APHIS Otis) for providing EAB samples from S. Korea. We would also like to thank Michelle Franklin for her comments on the manuscript.

Supplementary material

10530_2012_389_MOESM1_ESM.docx (62 kb)
Supplementary material 1 (DOCX 62 kb)
10530_2012_389_MOESM2_ESM.docx (41 kb)
Supplementary material 2 (DOCX 41 kb)
10530_2012_389_MOESM3_ESM.docx (148 kb)
Supplementary material 3 (DOCX 147 kb)
10530_2012_389_MOESM4_ESM.pdf (612 kb)
Supplementary material 4 (PDF 611 kb)


  1. Allendorf FW, Lundquist LI (2003) Introduction: population biology, evolution and control of invasive species. Conserv Biol 17:24–30CrossRefGoogle Scholar
  2. Balloux F, Lugon-Moulin N (2002) The estimation of population differentiation with microsatellite markers. Mol Ecol 11:155–165PubMedCrossRefGoogle Scholar
  3. Baranchikov Y, Mozolevskaya E, Yurchenko G, Kenis M (2008) Occurrence of the emerald ash borer, Agrilius planipennis in Russia and its potential impact on European forestry. EPPO Bull 38:233–238CrossRefGoogle Scholar
  4. Bauer LS, Haack RA, Miller DL, Petrice TR, Liu HP (2004) Emerald ash borer life cycle. In: Proceedings of the 2003 emerald ash borer research and technology meeting. USDA Forest Service, FHTET 2004-02, p 8.
  5. Bray AM (2009) AFLP, mtDNA, and microsatellite analysis of emerald ash borer population structure from Asia and North America. Doctoral Dissertation, Michigan State University, p 157Google Scholar
  6. Bray AM, Bauer LS, Haack RA, Poland TM, Smith JJ (2008) Emerald ash borer genetics: an update. In: Proceedings of the 2007 emerald ash borer research and technology development meeting. USDA Forest Service, FHTET 2008–07, p 11.
  7. Bray AM, Bauer LS, Poland TM, Haack RA, Cognato AI, Smith JJ (2011) Genetic analysis of emerald ash borer (Agrilus planipennis Fairmaire) populations in Asia and North America. Biol Invasions. doi: 10.1007/s10530-011-9970-5
  8. Cappaert D, McCullough DG, Poland TM, Siegert NW (2005) Emerald ash borer in North America: a research and regulatory challenge. Am Entomol 51:152–165Google Scholar
  9. Carson H (1990) Increased genetic variance after a population bottleneck. Trends Ecol Evol 5:228–230PubMedCrossRefGoogle Scholar
  10. Carter M, Casa AM, Zeid M, Mitchell SE, Kresovich S (2009) Isolation and characterization of microsatellite loci for the Asian longhorned beetle, Anoplophora glabripennis. Mol Ecol Res 9:925–928Google Scholar
  11. Carter M, Smith M, Harrison R (2010) Genetic analyses of the Asian longhorned beetle (Coleoptera, Cerambycidae, Anoplophora glabripennis), in North American, Europe and Asia. Biol Invasions 12:1165–1182CrossRefGoogle Scholar
  12. Chen YH, Opp SB, Berlocher SH, Roderick GK (2006) Are bottlenecks associated with colonization? Genetic diversity and diapause variation of native and introduced Rhagoletis completa populations. Oecologia 149:656–667PubMedCrossRefGoogle Scholar
  13. Davies N, Villablanca FX, Roderick GK (1999) Determining the source of individuals: multilocus genotyping in nonequilibrium population genetics. Trends Evol Ecol 14:17–21CrossRefGoogle Scholar
  14. Dlugosch K, Parker I (2008) Founding events in species invasions: genetic variation, adaptive evolution and the role of multiple introductions. Mol Ecol 17:431–449PubMedCrossRefGoogle Scholar
  15. Edmands S (2001) Phylogeography of the intertidal copepod Tigriopus californicus reveals substantially reduced population differentiation at northern latitudes. Mol Ecol 10:1743–1750PubMedCrossRefGoogle Scholar
  16. Estoup A, Guillemaud T (2010) Reconstructing routes of invasion using genetic data: why, how and so what? Mol Ecol 19:4113–4130CrossRefGoogle Scholar
  17. Evanno G, Regnaut S, Goudet J (2005) Determining the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620PubMedCrossRefGoogle Scholar
  18. Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491Google Scholar
  19. Excoffier L, Heckel G (2006) Computer programs for population genetics data analysis: a survival guide. Nat Rev Genet 7:745–758PubMedCrossRefGoogle Scholar
  20. Excoffier L, Laval G, Schneider S (2005) Arlequin (Version 3.0): an integrated software package for population genetics data analysis. Evol Bioinf Online 1:47–50Google Scholar
  21. Goudet J (1995) Fstat version 1.2: a computer program to calculate F-statistics. J Hered 86:485–486Google Scholar
  22. Grosberg RK, Cunningham CW (2001) Genetic structure in the sea: from populations to communities. In: Bertness MD, Gaines SD, Hay ME (eds) Marine community ecology. Sinauer and Associates, Southerland, pp 61–84Google Scholar
  23. Guillemaud T, Beaumont MA, Ciosi M, Cornuet J-M, Estoup A (2010) Inferring introduction routes of invasive species using approximate Bayesian computation on microsatellite data. Heredity 104:88–99PubMedCrossRefGoogle Scholar
  24. Haack RA, Jendek E, Liu HP, Marchant KR, Petrice TR, Poland TM, Ye H (2002) The emerald ash borer: a new exotic pest in North America. Newsl Mich Entomol Soc 47:1–5Google Scholar
  25. Harter AV, Gardner KA, Falush D, Lentz D, Bye RA, Rieseberg LH (2004) Origin of extant domesticated sunflowers in eastern North America. Nature 430:201–205PubMedCrossRefGoogle Scholar
  26. Hellberg ME (2009) Gene flow and isolation among populations of marine animals. Annu Rev Ecol Evol Syst 40:291–310CrossRefGoogle Scholar
  27. Lee CE (1999) Rapid and repeated invasions of fresh water by the copepod Eurytemora affinis. Evolution 53:1423–1434CrossRefGoogle Scholar
  28. Lee CE (2002) Evolutionary genetics of invasive species. Trends Ecol Evol 17:9–11Google Scholar
  29. Li YC, Korol AB, Fahima T, Beiles A, Nevo E (2002) Microsatellites: genomic distribution, putative functions and mutational mechanisms: a review. Mol Ecol 11:2453–2465PubMedCrossRefGoogle Scholar
  30. Liu HP, Bauer LS, Gao R, Zhao T, Petrice TR, Haack RA (2003) Exploratory survey for the emerald ash borer, Agrilus planipennis (Coleoptera: Buprestidae), and its natural enemies in China. Great Lakes Entomol 36:191–204Google Scholar
  31. Liu HP, Bauer LS, Miller DL, Zhao TH, Gao RT, Song LW, Luan QS, Jin RZ, Gao CQ (2007) Seasonal abundance of Agrilus planipennis (Coleoptera: Buprestidae) and its natural enemies Oobius agrili (Hymenoptera: Encyrtidae) and Tetrastichus planipennisi (Hymenoptera: Eulophidae) in China. Biol Control 42:61–71CrossRefGoogle Scholar
  32. MacFarlane DW, Meyer SP (2005) Characteristics and distribution of potential ash tree hosts for emerald ash borer. For Ecol Manage 213:15–24CrossRefGoogle Scholar
  33. McCullough DG, Siegert NW (2007) Estimating potential emerald ash borer (Coleoptera: Buprestidae) populations using ash inventory data. J Econ Entomol 100:1566–1586Google Scholar
  34. Meirmans PG, Van Tienderen PH (2004) GENOTYPE and GENODIVE: two programs for the analysis of genetic diversity of asexual organisms. Mol Ecol Notes 4:792–794CrossRefGoogle Scholar
  35. Mercader RJ, Siegert NW, Liebhold AM, McCullough DG (2009) Dispersal of the emerald ash borer, Agrilus planipennis in newly-colonized sites. Agric For Entomol 11:421–424CrossRefGoogle Scholar
  36. Nei M, Takeo M, Chakraborty R (1975) The bottleneck effect and genetic variability in populations. Evolution 29:1–10CrossRefGoogle Scholar
  37. Novack RN (2007) The role of evolution in the invasion process. Proc Natl Acad Sci 154:3671–3672CrossRefGoogle Scholar
  38. Novack SJ, Mack RN (1993) Genetic variation in Bromus tectorum (Poaceae): comparison between native and introduced populations. Heredity 71:167–176CrossRefGoogle Scholar
  39. Novack SJ, Mack RN (2005) Genetic bottlenecks in alien plant species influence of mating system and introduction dynamics. In: Sax DF, Stachowicz JJ, Gaines SD (eds) Species invasions insights into ecology, evolution and biogeography. Sinauer Associates Inc., Massachusetts, pp 201–228Google Scholar
  40. Nowak D, Crane D, Stevens J, Walton J (2003) Potential damage of emerald ash borer. USDA FS NRS online
  41. Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295CrossRefGoogle Scholar
  42. Poland TM (2007) Twenty million ash trees later: current status of emerald ash borer in Michigan. Newsl Mich Entomol Soc 52:10–14Google Scholar
  43. Poland TM, McCullough DG (2006) Evaluation of a multicomponent trap for emerald ash borer incorporating color, silhouette, height, texture, and ash leaf and bark volatiles. Emerald Ash Borer and Asian Longhorn Beetle Research and Development MeetingGoogle Scholar
  44. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedGoogle Scholar
  45. Ranum L, Day J (2002) Dominantly inherited, non-coding microsatellite expansion disorders. Curr Opin Genet Dev 12:266–271PubMedCrossRefGoogle Scholar
  46. Raymond M, Rousset F (1995a) An exact test for population differentiation. Evolution 49:1280–1283CrossRefGoogle Scholar
  47. Raymond M, Rousset F (1995b) GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249Google Scholar
  48. Rebek EJ, Herms DA, Smitley DR (2008) Interspecific variation in resistance to emerald ash borer (Coleoptera: Buprestidae) among North American and Asian ash (Fraxinus spp.). Environ Entomol 37:242–246PubMedCrossRefGoogle Scholar
  49. Rice WR (1988) Analyzing tables for statistical tests. Evolution 43:223–225CrossRefGoogle Scholar
  50. Roderick GK (1996) Geographic structure of insect populations: gene flow, phylogeography, and their uses. Annu Rev Entomol 41:325–352PubMedCrossRefGoogle Scholar
  51. Roderick G, Navajas M (2003) Genes in new environments: genetics and evolution in biological control. Nat Rev Genet 4:889–899PubMedCrossRefGoogle Scholar
  52. Rousset F (2008) GENEPOP’007: a complete re-implementation of the GENEPOP software for Windows and Linux. Mol Ecol Resour 8:103–106PubMedCrossRefGoogle Scholar
  53. Sakai AK, Allendorf FW, Hold JW, Lodge DM, Molofsky J, With KA, Braughman S, Cabin RJ, Cohen JE, Ellstrand NC, McCauley DE, O’Neil P, Parker IM, Thompson JN, Weller SG (2001) The population biology of invasive species. Annu Rev Ecol Syst 32:305–332CrossRefGoogle Scholar
  54. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring HarborGoogle Scholar
  55. Selkoe KA, Toonen RJ (2006) Microsatellites for ecologists: a practical guide to using and evaluating microsatellite markers. Ecol Lett 9:615–629PubMedCrossRefGoogle Scholar
  56. Shapiro SS, Wilk MB (1965) An analysis of variance test for normality (complete samples). Biometrika 52:591–611Google Scholar
  57. Siegert NW, McCullough DG, Liebhold AM, Telewski FW (2008) Dendrochrological reconstruction of the establishment and spread of the emerald ash borer. Lance D, Mastro V, Reardon R (compilers). In: Proceedings of the 2007 emerald ash borer research and technology meeting. USDA Forest Service, FHTET 2008-07, pp 4–5.
  58. Siegert NW, McCullough DG, Williams DW, Fraser I, Poland TM, Pierce SJ (2010) Dispersal of Agrilus planipennis (Coleoptera: Buprestidae) from discrete epicenters in two outlier sites. Environ Entomol 39:253–265PubMedCrossRefGoogle Scholar
  59. Spencer CC, Neigel JE, Leberg PL (2000) Experimental evaluation of the usefulness of microsatellite DNA for detecting demographic bottlenecks. Mol Ecol 9:1517–1528PubMedCrossRefGoogle Scholar
  60. Taylor RAJ, Bauer LS, Poland TM, Windell KN (2010) Flight performance of Agrilus planipennis (Coleoptera: Buprestidae) on a flight mill and in free flight. J Insect Behav 23:128–148CrossRefGoogle Scholar
  61. Tsutsui ND, Suarez AV (2000) The colony structure and population biology of invasive ants. Conserv Biol 17:48–58CrossRefGoogle Scholar
  62. Tsutsui ND, Suarez AV, Holoway DA, Case TJ (2001) Relationships among native and introduced populations of the argentine ant Linepithema humile and the source of introduced populations. Mol Ecol 30:215–2161Google Scholar
  63. Tsutsui ND, Suarez AV, Grosberg RK (2003) Genetic diversity, asymmetrical aggression, and recognition in a widespread invasive species. Proc Natl Acad Sci 100:1078–1083PubMedCrossRefGoogle Scholar
  64. Wang X-Y, Yang Z-Q, Gould JR, Zhang Y-N, Liu G-J, Liu E-S (2010) The biology and ecology of the emerald ash borer, Agrilus planipennis, in China. J Insect Sci 10:1–21CrossRefGoogle Scholar
  65. Wares JP, Hughes RA, Grosberg RK (2005) Mechanisms that drive evolutionary change, insights from species introductions and invasions. In: Sax DF, Stachowicz JJ, Gaines SD (eds) Species invasions insights into ecology, evolution and biogeography. Sinauer Associates Inc., Massachusetts, pp 229–257Google Scholar
  66. Wei X, Wu Y, Reardon R, Sun T-H, Lu M, Sun J-H (2007) Biology and damage traits of emerald ash borer (Agrilus planipennis Fairmaire) in China. Insect Sci 14:367–373CrossRefGoogle Scholar
  67. Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370CrossRefGoogle Scholar
  68. Zhang L-Y, Chen Z-X, Yang G-D, Huang Q-Y, Huang Q-S (1995) Control techniques of emerald ash borer, Agrilus marcopoli, on velvet ash, Fraxinus velutina. Bull Hortic Sci Technol Tianjin 26:1–7Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Carson C. Keever
    • 1
    Email author
  • Christal Nieman
    • 2
    • 3
  • Larissa Ramsay
    • 2
    • 4
  • Carol E. Ritland
    • 3
  • Leah S. Bauer
    • 5
  • D. Barry Lyons
    • 4
  • Jenny S. Cory
    • 1
    • 2
  1. 1.Department of Biological SciencesSimon Fraser UniversityBurnabyCanada
  2. 2.Department of BiologyAlgoma UniversitySault Ste. MarieCanada
  3. 3.Department of Forest Sciences, Genetic Data CenterUniversity of British ColumbiaVancouverCanada
  4. 4.Natural Resources Canada, Canadian Forest ServiceSault Ste. MarieCanada
  5. 5.USDA Forest Service Northern Research StationE. LansingUSA

Personalised recommendations