Advertisement

Biological Invasions

, Volume 15, Issue 6, pp 1319–1330 | Cite as

Testing the Australian Weed Risk Assessment with different estimates for invasiveness

  • T. A. A. Speek
  • J. A. R. Davies
  • L. A. P. Lotz
  • W. H. van der Putten
Original Paper

Abstract

The Weed Risk Assessment (WRA) has become an effective tool in predicting invasiveness of exotic plant species. In studies testing the WRA, exotic plant species are usually divided into major weeds, minor weeds and non-weeds. However, these divisions are qualitative, as the categories are assigned by experts. Many studies searching for plant traits that are indicative of plant invasiveness use quantitative estimates to measure invasiveness. We compared how quantitative and qualitative estimates of invasiveness may relate to WRA scores. As quantitative estimates we used regional frequency (spread), change in regional frequency and local dominance of naturalized exotic plant species in The Netherlands. To obtain a qualitative estimate we determined if the exotic plant species occurred on a black list in neighbouring regions. We related WRA scores of the exotic plant species to these qualitative and quantitative estimates of invasiveness. Our results reveal that the WRA predicted the qualitative (black list) estimate more accurately than the quantitative (dominance and spread) ones. The black list estimate matches with the overall impact of exotic species, which is assumed to incorporate regional spread, local dominance and noxiousness. Therefore, the WRA predicts the noxiousness component, but to a lesser extent the spatial components of impact of exotic species. On the other hand, studies that use regional spread and other quantitative estimates of invasiveness tend not to include the noxiousness component of impact. We propose that our analyses may also help to further solve the recent debate on whether or not performing research on exotic species.

Keywords

Risk assessment Impact WRA Regional spread Local dominance Aliens 

Notes

Acknowledgments

We thank W.L.M. Tamis and J.H.J. Schaminée for using the datasets on regional spread and local dominance of the species used in this study. We want to thank H. Duistermaat and two anonymous referees for comments on an earlier draft of this manuscript. The research was funded by the former Dutch Ministry of Agriculture, Nature and Food Quality, FES-programme ‘Versterking Infrastructuur Plantgezondheid’. WvdP was supported by ALW-Vici grant.

References

  1. Blackburn TM, Pyšek P, Bacher S, Carlton JT, Duncan RP, Jarošík V, Wilson JRU, Richardson DM (2011) A proposed unified framework for biological invasions. Trends Ecol Evol (Personal edition) 26(7):333–339CrossRefGoogle Scholar
  2. Branquart E (2011) Alert, black and watch lists of invasive species in Belgium. Harmonia version 1.2, Belgian Forum on Invasive species. http://ias.biodiversity.be. Accessed Nov 2010–Feb 2011
  3. Bucharova A, van Kleunen M (2009) Introduction history and species characteristics partly explain naturalization success of North American woody species in Europe. J Ecol 97(2):230–238CrossRefGoogle Scholar
  4. CAB International (2010) Forestry compendium. http://www.cabi.org/fc/. Accessed Nov 2010–Feb 2011
  5. Crosti R, Cascone C, Cipollaro S (2010) Use of a weed risk assessment for the Mediterranean region of Central Italy to prevent loss of functionality and biodiversity in agro-ecosystems. Biol Invasions 12(6):1607–1616CrossRefGoogle Scholar
  6. Daehler CC, Denslow JS, Ansari S, Kuo HC (2004) A risk-assessment system for screening out invasive pest plants from Hawaii and other Pacific Islands. Conserv Biol 18(2):360–368CrossRefGoogle Scholar
  7. DAISIE (2011) DAISIE European invasive alien species gateway. http://www.europe-aliens.org. Accessed Nov 2010–Feb 2011
  8. Davis MA, Chew MK, Hobbs RJ, Lugo AE, Ewel JJ, Vermeij GJ, Brown JH, Rosenzweig ML, Gardener MR, Carroll SP, Thompson K, Pickett STA, Stromberg JC, Tredici PD, Suding KN, Ehrenfeld JG, Philip Grime J, Mascaro J, Briggs JC (2011) Don’t judge species on their origins. Nature 474(7350):153–154PubMedCrossRefGoogle Scholar
  9. Dawson W, Burslem D, Hulme PE (2009a) Factors explaining alien plant invasion success in a tropical ecosystem differ at each stage of invasion. J Ecol 97(4):657–665CrossRefGoogle Scholar
  10. Dawson W, Burslem D, Hulme PE (2009b) The suitability of weed risk assessment as a conservation tool to identify invasive plant threats in East African rainforests. Biol Conserv 142(5):1018–1024CrossRefGoogle Scholar
  11. Delong ER, Delong DM, Clarkepearson DI (1988) Comparing the areas under 2 or more correlated receiver operating characteristic curves—a nonparametric approach. Biometrics 44(3):837–845PubMedCrossRefGoogle Scholar
  12. EPPO (2011) EPPO list of invasive alien plants. http://www.eppo.org/INVASIVE_PLANTS/ias_plants.htm. Accessed Nov 2010–Feb 2011
  13. Fawcett T (2006) An introduction to ROC analysis. Pattern Recognit Lett 27(8):861–874CrossRefGoogle Scholar
  14. Gasso N, Basnou C, Vilà M (2010) Predicting plant invaders in the Mediterranean through a weed risk assessment system. Biol Invasions 12(3):463–476CrossRefGoogle Scholar
  15. GCW (2011) Global compendium of weeds. www.hear.org/gcw. Accessed Nov 2010–Feb 2011
  16. Gordon DR, Gantz CA (2011) Risk assessment for invasiveness differs for aquatic and terrestrial plant species. Biol Invasions 13(8):1829–1842CrossRefGoogle Scholar
  17. Gordon DR, Onderdonk DA, Fox AM, Stocker RK (2008a) Consistent accuracy of the Australian weed risk assessment system across varied geographies. Divers Distrib 14(2):234–242CrossRefGoogle Scholar
  18. Gordon DR, Onderdonk DA, Fox AM, Stocker RK, Gantz CA (2008b) Predicting invasive plants in Florida using the Australian weed risk assessment. Invasive Plant Sci Manag 1:178–195CrossRefGoogle Scholar
  19. Gordon DR, Riddle B, Pheloung P, Ansari S, Buddenhagen C, Chimera C, Daehler CC, Dawson W, Denslow JS, Jaqualine TN, LaRosa A, Nishida T, Onderdonk DA, Panetta FD, Pyšek P, Randall RP, Richardson DM, Virtue JG, Williams PA (2010) Guidance for addressing the Australian weed risk assessment questions. Plant Prot Q 25(2):56–74Google Scholar
  20. Hamilton MA, Murray BR, Cadotte MW, Hose GC, Baker AC, Harris CJ, Licari D (2005) Life-history correlates of plant invasiveness at regional and continental scales. Ecol Lett 8(10):1066–1074CrossRefGoogle Scholar
  21. Hennekens SM, Schaminée JHJ (2001) TURBOVEG, a comprehensive data base management system for vegetation data. J Veg Sci 12(4):589–591CrossRefGoogle Scholar
  22. Holm S (1979) A simple sequentially rejective multiple test procedure. Scand J Stat 6(2):65–70Google Scholar
  23. Hulme PE (2012) Weed risk assessment: a way forward or a waste of time? J Appl Ecol 49(1):10–19CrossRefGoogle Scholar
  24. Keller RP, Lodge DM, Finnoff DC (2007) Risk assessment for invasive species produces net bioeconomic benefits. Proc Natl Acad Sci USA 104(1):203–207PubMedCrossRefGoogle Scholar
  25. Kloosterman FH, Van der Meijden R (1994) Eindverslag digitalisering van het IVON-archief (historisch floristisch bestand) van het Rijksherbarium te Leiden. TNO, DelftGoogle Scholar
  26. Klotz S, Kühn I, Durka W (2002) BIOLFLOR—Eine Datenbank mit biologisch-ökologischen Merkmalen zur Flora von Deutschland. Bundesamt für Naturschutz, BonnGoogle Scholar
  27. Křivánek M, Pyšek P (2006) Predicting invasions by woody species in a temperate zone: a test of three risk assessment schemes in the Czech Republic (Central Europe). Divers Distrib 12(3):319–327CrossRefGoogle Scholar
  28. Küster EC, Kühn I, Bruelheide H, Klotz S (2008) Trait interactions help explain plant invasion success in the German flora. J Ecol 96(5):860–868CrossRefGoogle Scholar
  29. Lambdon PW, Pyšek P, Basnou C, Hejda M, Arianoutsou M, Essl F, Jarošík V, Pergl J, Winter M, Anastasiu P, Andriopoulos P, Bazos I, Brundu G, Celesti-Grapow L, Chassot P, Delipetrou P, Josefsson M, Kark S, Klotz S, Kokkoris Y, Kühn I, Marchante H, Perglova I, Pino J, Vilà M, Zikos A, Roy D, Hulme PE (2008) Alien flora of Europe: species diversity, temporal trends, geographical patterns and research needs. Preslia 80(2):101–149Google Scholar
  30. McClay A, Sissons A, Wilson C, Davis S (2010) Evaluation of the Australian weed risk assessment system for the prediction of plant invasiveness in Canada. Biol Invasions 12(12):4085–4098CrossRefGoogle Scholar
  31. Murtaugh PA (2009) Performance of several variable-selection methods applied to real ecological data. Ecol Lett 12(10):1061–1068PubMedCrossRefGoogle Scholar
  32. Nishida T, Yamashita N, Asai M, Kurokawa S, Enomoto T, Pheloung PC, Groves RH (2009) Developing a pre-entry weed risk assessment system for use in Japan. Biol Invasions 11(6):1319–1333CrossRefGoogle Scholar
  33. NOBANIS (2011) Factsheets on invasive alien species. http://www.nobanis.org/Factsheets.asp. Accessed Nov 2010–Feb 2011
  34. Parker IM, Simberloff D, Lonsdale WM, Goodell K, Wonham M, Kareiva PM, Williamson MH, Von Holle B, Moyle PB, Byers JE, Goldwasser L (1999) Impact: toward a framework for understanding the ecological effects of invaders. Biol Invasions 1(1):3–19CrossRefGoogle Scholar
  35. Pheloung P, Williams P, Halloy S (1999) A weed risk assessment model for use as a biosecurity tool evaluating plant introductions. J Environ Manage 57:239–251CrossRefGoogle Scholar
  36. Pimentel D, Zuniga R, Morrison D (2005) Update on the environmental and economic costs associated with alien-invasive species in the United States. Ecol Econ 52(3):273–288CrossRefGoogle Scholar
  37. Richardson DM, Pyšek P, Rejmánek M, Barbour MG, Panetta FD, West CJ (2000) Naturalization and invasion of alien plants: concepts and definitions. Divers Distrib 6:93–107CrossRefGoogle Scholar
  38. Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez JC, Muller M (2011) pROC: an open-source package for R and S plus to analyze and compare ROC curves. BMC 12Google Scholar
  39. Royal Botanic Gardens Kew (2008) Seed information database (SID). Version 7.1. http://data.kew.org/sid/. Accessed Nov 2010–Feb 2011
  40. Speek TAA, Lotz LAP, Ozinga WA, Tamis WLM, Schaminée JHJ, van der Putten WH (2011) Factors relating to regional and local success of exotic plant species in their new range. Divers Distrib 17(3):542–551CrossRefGoogle Scholar
  41. Tamis WLM (2005) Coping with recording bias in floristic surveys. Gorteria Suppl 6:17–52Google Scholar
  42. Tamis WLM, van der Meijden R, Runhaar J, Bekker RM, Ozinga WA, Odé B, Hoste I (2004) Standaardlijst van de Nederlandse flora 2003. Gorteria 30(4/5):101–195Google Scholar
  43. Tamis WLM, van’t Zelfde M, van der Meijden R, Groen CLG, de Haes HAU (2005) Ecological interpretation of changes in the Dutch flora in the 20th century. Biol Conserv 125(2):211–224CrossRefGoogle Scholar
  44. Taramarcaz P, Lambelet C, Clot B, Keimer C, Hauser C (2005) Ragweed (Ambrosia) progression and its health risks: will Switzerland resist this invasion? Swiss Med Wkly 135(37–38):538–548PubMedGoogle Scholar
  45. Thompson K, Davis MA (2011) Why research on traits of invasive plants tells us very little. Trends Ecol Evol (Personal edition) 26(4):155–156CrossRefGoogle Scholar
  46. Thompson K, Hodgson JG, Rich TCG (1995) Native and alien invasive plants: more of the same? Ecography 18(4):390–402CrossRefGoogle Scholar
  47. Van der Meijden R (2005) Heukels’ Flora van Nederland, 23rd edn. Wolters-Noordhoff, GroningenGoogle Scholar
  48. Van der Meijden R, Groen CLG, Vermeulen JJ, Peterbroers T, Van ‘t Zelfde M, Witte JPM (1996) De landelijke floradatabank FLORBASE-1; eindrapport. RHHB/CML/UL-WHHGoogle Scholar
  49. Vilà M, Espinar JL, Hejda M, Hulme PE, Jarošík V, Maron JL, Pergl J, Schaffner U, Sun Y, Pyšek P (2011) Ecological impacts of invasive alien plants: a meta-analysis of their effects on species, communities and ecosystems. Ecol Lett 14(7):702–708PubMedCrossRefGoogle Scholar
  50. Youden WJ (1950) Index for rating diagnostic tests. Cancer 3(1):32–35PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • T. A. A. Speek
    • 1
    • 2
    • 3
  • J. A. R. Davies
    • 1
  • L. A. P. Lotz
    • 1
  • W. H. van der Putten
    • 2
    • 3
  1. 1.Plant Research InternationalWageningen University and Research CentreWageningenThe Netherlands
  2. 2.Laboratorium of NematologyWageningen University and Research CentreWageningenThe Netherlands
  3. 3.Department of Terrestrial EcologyNetherlands Institute of Ecology (NIOO-KNAW)WageningenThe Netherlands

Personalised recommendations