Biological Invasions

, Volume 15, Issue 5, pp 953–959 | Cite as

Genetic analysis of a novel invasion of Puerto Rico by an exotic constricting snake

  • R. Graham Reynolds
  • Alberto R. Puente-Rolón
  • Robert N. Reed
  • Liam J. Revell
Invasion Note

Abstract

The tropical island Puerto Rico is potentially vulnerable to invasion by some species of exotic snakes; however, until now no established populations had been reported. Here we report and genetically characterize the nascent invasion of Puerto Rico by an exotic constricting snake of the family Boidae (Boa constrictor) using mtDNA and microsatellite data. Over 150 individual B. constrictor have been removed from Mayagüez municipality since May 2011, and our results from the genetic analysis of 32 individuals suggest that this population was recently founded by individuals of one subspecies from a genetic lineage common to zoo and breeding collections, but that the potential propagule pool consists of two subspecies. We also suggest that anthropogenic long-distance dispersal within the island of Puerto Rico may be occurring from the established population, with implications for further establishment across the island. This study represents the first report of the naturalization of an invasive species of boid snake in Puerto Rico and will be important in determining mitigation strategies for this invasion as well as providing a basis for comparison to other on-going studies of invasive snakes.

Keywords

Boa constrictor Boidae Effective population size Genetic diversity Invasive species Microsatellite 

Supplementary material

10530_2012_354_MOESM1_ESM.docx (257 kb)
Supplementary material 1 (DOCX 257 kb)

References

  1. Bomford M, Kraus F, Braysher M, Walter L, Brown L (2005) Risk assessment model for the import and keeping of exotic reptiles and amphibians. Gov. of Australia, Bureau of Rural Sciences, Canberra, ACTGoogle Scholar
  2. Booth W, Johnson DH, Moore S, Schal C, Vargo EL (2011) Evidence for viable, non-clonal but fatherless Boa constrictors. Biol Lett 7:253–256. doi:10.1098/rsbl/2010.0793 PubMedCrossRefGoogle Scholar
  3. Burbrink FT, Lawson R, Slowinski JB (2000) Mitochondrial DNA phylogeography of the polytypic north American rat snake (Elaphe obsoleta): a critique of the subspecies concept. Evolution 54:2107–2118PubMedGoogle Scholar
  4. Fitzpatrick BM, Fordyce JA, Niemiller ML, Reynolds RG (2012) What can DNA tell us about biological invasions? Biol Invasions 14:245–253. doi:10.1007/s10530-011-0064-1 CrossRefGoogle Scholar
  5. Gautschi B, Widmer A, Joshi J, Koella JC (2002) Increased frequency of scale anomalies and loss of genetic variation in serially bottlenecked populations of the dice snake, Natrix tessellata. Conserv Genet 3:235–245CrossRefGoogle Scholar
  6. Guicking D, Griffiths RA, Moore RD, Joger U, Wink M (2006) Intorduced alien or persecuted native? Resolving the origin of the viperine snake (Natrix maura) on Mallorca. Biol Conserv 15:3045–3054. doi:10.1007/s10531-005-4878-y Google Scholar
  7. Hedrick PW (2005) Genetics of populations, 3rd edn. Jones and Bartlett, Sudbury, MAGoogle Scholar
  8. Hill WG, Robertson A (1968) Linkage disequilibrium in finite populations. Theor Appl Genet 38:226–231CrossRefGoogle Scholar
  9. Hynková I, Starostová Z, Frynta D (2009) Mitochondrial DNA variation reveals recent evolutionary history of main Boa constrictor clades. Zool Sci 26:623–631PubMedCrossRefGoogle Scholar
  10. Kalinowski ST, Wagner AP, Taper ML (2006) ML-RELATE: a computer program for maximum-likelihood estimation of relatedness and relationship. Mol Ecol Notes 6:576–579. doi:10.1111/j.1471-8286.2006.01256.x CrossRefGoogle Scholar
  11. Larkin MA et al (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948PubMedCrossRefGoogle Scholar
  12. Loew SS, Williams DF, Ralls K, Pilgrim K, Fleischer RC (2005) Population structure and genetic variation in the endangered giant kangaroo rat (Dipodomys ingens). Conserv Genet 6:495–510CrossRefGoogle Scholar
  13. Maddison WP, Maddison DR (2011) Mesquite: a modular system for evolutionary analysis. Version 2.75. http://mesquiteproject.org
  14. Mayer GC (2012) Puerto Rico and the Virgin Islands. In: Powell R, Henderson RW (eds) Island lists of West Indian amphibians and reptiles. Bull FL Mus Nat Hist 51: 85–166Google Scholar
  15. Ohta T, Kimura M (1969) Linkage disequilibrium due to random genetic drift. Genet Res 13:47–55CrossRefGoogle Scholar
  16. Peakall R, Smouse PE (2006) Genalex 6: genetic analysis in excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295. doi:10.1111/j.1471-8286.2005.01155.x CrossRefGoogle Scholar
  17. Posada D (2006) Model test server: a web-based tool for the statistical selection of models of nucleotide substitution online. Nucleic Acids Res 34:W700–W703. doi:10.1093/nar/gkl042 PubMedCrossRefGoogle Scholar
  18. Quick JS, Reinert HK, de Cuba ER, Odum RA (2005) Recent occurrence and dietary habits of Boa constrictor on Aruba, Dutch West Indies. J Herpetol 39:304–307. doi:10.1670/45-04N CrossRefGoogle Scholar
  19. Raymond M, Rousset F (1995) GenePop v1.2: population genetics software for exact test and ecumenicism. J Hered 86:248–249Google Scholar
  20. Reed RN, Rodda GH (2009) Giant constrictors: biological and management profiles and an establishment risk assessment for nine large species of pythons, anacondas, and the Boa constrictor. US Geological Survey Open-File Report 2009-1202 (USGS), Reston, VAGoogle Scholar
  21. Ronquist F et al (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol. doi:10.1093/sysbio/sys029 Google Scholar
  22. Snow RW, Krysko KL, Enge KM, Oberhofer L, Warren-Bradley A, Wilkins L (2007) Introduced populations of Boa constrictor (Boidae) and Python molurus bivittatus (Pythonidae) in southern Florida. In: Henderson RW, Powell R (eds) Biology of the boas and pythons. Eagle Mountain, Utah, pp 416–438Google Scholar
  23. Tzika AC, Remy C, Gibson R, Milinkovitch MC (2008) Molecular genetic analysis of a captive-breeding program: the vulnerable endemic Jamaican yellow boa. Conserv Genet 10:69–77. doi:10.1007/s10592-008-9519-z CrossRefGoogle Scholar
  24. van Wilgen NC, Roura-Pascual N, Richardson DM (2009) A quantitative climate-match score for risk-assessment screening of reptile & amphibian introductions. Environ Manage 44:590–607. doi:10.1007/s00267-009-9311-y PubMedCrossRefGoogle Scholar
  25. Vázquez-Domínguez E, Suárez-Atilano M, Booth W, Gonzáles-Baca C, Cuarón AD (2012) Genetic evidence of a recent successful colonization of introduced species on islands: Boa constrictor imperator on Cozumel Island. Biol Invasions. doi:10.1007/s10530-012-0217-x Google Scholar
  26. Waples RS (2006) A bias correction for estimates of effective population size based on linkage disequilibrium at unlinked loci. Conserv Genet 7:167–184. doi:10.1007/s10592-005-9100-y CrossRefGoogle Scholar
  27. Waples RS, Do C (2008) LDNE: a program for estimating effective population size from data on linkage disequilibrium. Mol Ecol Res 8:753–756. doi:10.1111/j.1755-0998.2007.02061.x CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • R. Graham Reynolds
    • 1
  • Alberto R. Puente-Rolón
    • 2
  • Robert N. Reed
    • 3
  • Liam J. Revell
    • 1
  1. 1.Department of BiologyUniversity of Massachusetts BostonBostonUSA
  2. 2.Departamento de Ciencias y TecnologíaUniversidad Interamericana de Puerto RicoAreciboUSA
  3. 3.U.S. Geological Survey, Fort Collins Science CenterFort CollinsUSA

Personalised recommendations