Biological Invasions

, Volume 15, Issue 5, pp 1101–1112 | Cite as

Human introductions create opportunities for intra-specific hybridization in an alien lizard

  • Sozos Michaelides
  • Geoffrey M. While
  • Celia Bell
  • Tobias Uller
Original Paper

Abstract

Introduction of individuals from multiple sources could create opportunities for hybridization between previously isolated lineages, which may impact on the invasion process. Identifying the phylogeographic origin of introduced populations is therefore an important task to further test the causes and consequences of human-mediated translocations. The common wall lizard (Podarcis muralis) shows a strong phylogeographic structure as a result of past isolation in glacial refugia, but it has also been commonly introduced outside of its native range. Here we analysed 655 base pairs (bp) of the cytochrome b sequence from 507 individuals from 23 introduced populations of P. muralis in England. We identified 12 unique haplotypes in the introduced populations that were nested into five native geographically distinct clades with genetic divergences ranging from 2.1 to 5.7 %. Multiple clade origin was common within populations, with a maximum of three different haplotype clades being represented within a single population. The genetic data are consistent with a scenario whereby initial establishment was a result of translocation of animals from their native range, whereas more recent establishment (i.e. since the mid-1980s) is the result of translocations of animals from previously established non-native populations. However, this requires further study. Overall, our results show that human introductions have created substantial opportunities for hybridization between genetically and phenotypically distinct lineages, which may have important consequences for the establishment success and long-term viability of introduced wall lizard populations.

Keywords

Invasive species mtDNA Phylogeography Hybridization Admixture Lizard 

Supplementary material

10530_2012_353_MOESM1_ESM.pdf (157 kb)
Supplementary material 1 (PDF 156 kb)

References

  1. Allan GM, Prelypchan CJ, Gregory PT (2006) Population profile of an introduced species, the common wall lizard (Podarcis muralis), on Vancouver Island, Canada. Can J Zool 84(1):51–57CrossRefGoogle Scholar
  2. Arnold M (1997) Natural hybridization and evolution. Oxford University Press, New YorkGoogle Scholar
  3. Arnold ML, Martin NH (2010) Hybrid fitness across time and habitats. Trends Ecol Evol 25(9):530–536PubMedCrossRefGoogle Scholar
  4. Avise JC (1994) Molecular markers, natural history, and evolution. Chapman & Hall, New YorkCrossRefGoogle Scholar
  5. Bandelt HJ, Forster P, Röhl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16(1):37–48PubMedCrossRefGoogle Scholar
  6. Bellati A, Pellitteri-Rosa D, Sacchi R, Nistri A, Galimberti A, Casiraghi M, Fasola M, Galeotti P (2011) Molecular survey of morphological subspecies reveals new mitochondrial lineages in Podarcis muralis (Squamata: Lacertidae) from the Tuscan Archipelago (Italy). J Zoolog Syst Evol Res 49:240–250Google Scholar
  7. Böhme MU, Fritz U, Kotenko T, Georg D, Ljubisavljević K, Tzankov N, Berendonk TU (2007) Phylogeography and cryptic variation within the Lacerta viridis complex (Lacertidae, Reptilia). Zoolog Scr 36(2):119–131CrossRefGoogle Scholar
  8. Burke R, Deichsel G (2008) Lacertid lizard introductions into North America: history and future. In: Mitchell JC, Brown REJ, Bartholomew B (eds) Urban herpetology. Society for the Study of Amphibians and Reptiles, Salt Lake City, UT, pp 347–353Google Scholar
  9. Chapple DG, Miller KA, Kraus F, Thompson MB (2012) Divergent introduction histories among invasive populations of the delicate skink (Lampropholis delicata): has the importance of genetic admixture in the success of biological invasions been overemphasized? Divers Distrib. doi:10.1111/j.1472-4642.2012.00919.x Google Scholar
  10. Crispo E, Moore J-S, Lee-Yaw JA, Gray SM, Haller BC (2011) Broken barriers: human-induced changes to gene flow and introgression in animals. BioEssays 33(7):508–518PubMedCrossRefGoogle Scholar
  11. Davison J, Ho SYW, Bray SC, Korsten M, Tammeleht E, Hindrikson M, Østbye K, Østbye E, Lauritzen SE, Austin J (2011) Late-quaternary biogeographic scenarios for the brown bear (Ursus arctos), a wild mammal model species. Quat Sci Rev 30(3):418–430CrossRefGoogle Scholar
  12. Deichsel G, Schwiger S (2004) Podarcis muralis (common wall lizard). Herpetol Rev 35:289–290Google Scholar
  13. Dlugosch KM, Parker IM (2008) Founding events in species invasions: genetic variation, adaptive evolution, and the role of multiple introductions. Mol Ecol 17:431–449. doi:10.1111/j.1365-294X.2007.03538.x PubMedCrossRefGoogle Scholar
  14. Drummond AJ, Ashton B, Buxton S, Cheung M, Cooper A, Duran C, Field M, Heled J, Kearse M, Markowitz S, Moir R, Stones-Havas S, Sturrock S, Thierer T, Wilson A (2011) Geneious v5.4Google Scholar
  15. Estoup A, Guillemaud T (2010) Reconstructing routes of invasion using genetic data: why, how and so what? Mol Ecol 19(19):4113–4130CrossRefGoogle Scholar
  16. Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Res 10(3):564–567CrossRefGoogle Scholar
  17. Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491PubMedGoogle Scholar
  18. Frazer JFD (1964) Introduced species of amphibians and reptiles in mainland Britain. Br J Herpetol 3:145–150Google Scholar
  19. Giovannotti M, Nisi-Cerioni P, Caputo V (2010) Mitochondrial DNA sequence analysis reveals multiple Pleistocene glacial refugia for Podarcis muralis (Laurenti, 1768) in the Italian Peninsula. Italian J Zool 77:277–288. doi:10.1080/11250000903143885 CrossRefGoogle Scholar
  20. Glandt D (2010) Taschenlexikon der Amphibien und Reptilien Europas. Quelle & Meyer, WiebelsheimGoogle Scholar
  21. Gleed-Owen CP (2004) Green lizards and wall lizards on Bournemouth cliffs. Herpetol Bull 88:3–7Google Scholar
  22. Grant PR, Grant BR, Petren K (2005) Hybridization in the recent past. Am Nat 166(1):56–67PubMedCrossRefGoogle Scholar
  23. Gruschwitz M, Böhme W (1986) Podarcis muralis (Laurenti, 1768)—Mauereidechse. In: Handbuch der Amphibien und Reptilien Europas. Bandll/2, Echsen (Sauria) III (Lacertidae lIl; Podarcis). Aula-Verlag, Wiesbaden, pp 155–208Google Scholar
  24. Harris DJ, Sá-Sousa P (2002) Molecular phylogenetics of Iberian Wall Lizards (Podarcis): is Podarcis hispanica a species complex? Mol Phylogenet Evol 23(1):75–81PubMedCrossRefGoogle Scholar
  25. Hewitt GM (1996) Some genetic consequences of ice ages and theur role in divergence and speciation. Biol J Linn Soc 58:247–276Google Scholar
  26. Hewitt GM (2004) Genetic consequences of climatic oscillations in the quaternary. Philos Trans Royal Soc B: Biol Sci 359(1442):183–195CrossRefGoogle Scholar
  27. Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17(8):754–755PubMedCrossRefGoogle Scholar
  28. Joger U, Fritz U, Guicking D, Kalyabina-Hauf S, Nagy ZT, Wink M (2007) Phylogeography of western palaearctic reptiles-spatial and temporal speciation patterns. Zool Anz J Comp Zool 246(4):293–313CrossRefGoogle Scholar
  29. Kalyabina S, Milto KD, Ananjeva NB, Legal L, Joger U, Wink M (2001) Phylogeography and systematics of Lacerta agilis based on mitochondrial cytochrome b gene sequences: first results. Russ J Herpetol 8:149–159Google Scholar
  30. Katoh K, Misawa K, Kuma K-i, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast fourier transform. Nucleic Acids Res 30(14):3059–3066PubMedCrossRefGoogle Scholar
  31. Kolbe JJ, Glor RE, Schettino LRG, Lara AC, Larson A, Losos JB (2004) Genetic variation increases during biological invasion by a Cuban lizard. Nature 431(7005):177–181PubMedCrossRefGoogle Scholar
  32. Kolbe JJ, Lavin BR, Burke RL, Rugiero L, Capula M, Luiselli L (2012) The desire for variety: Italian wall lizard (Podarcis siculus) populations introduced to the United States via the pet trade are derived from multiple native-range sources. Biol Invasions. doi:10.1007/s10530-012-0325-7
  33. Lavergne S, Molofsky J (2007) Increased genetic variation and evolutionary potential drive the success of an invasive grass. Proc Natl Acad Sci USA 104(10):3883PubMedCrossRefGoogle Scholar
  34. Lever C (1977) The naturalized animals of the British Isles. Hutchinson & Co, LondonGoogle Scholar
  35. Lombaert E, Guillemaud T, Cornuet J-M, Malausa T, Facon B, Estoup A (2010) Bridgehead effect in the worldwide invasion of the biocontrol Harlequin Ladybird. PLoS One 5(3):e9743PubMedCrossRefGoogle Scholar
  36. Lunt DH, Ibrahim KM, Hewitt GM (1998) MtDNA phylogeography and postglacial patterns of subdivision in the meadow grasshopper Chorthippus parallelus. Heredity 80:633–641. doi:10.1046/j.1365-2540.1998.00311.x PubMedCrossRefGoogle Scholar
  37. Mallet J (2005) Hybridization as an invasion of the genome. Trends Ecol Evol 20(5):229–237. doi:10.1016/j.tree.2005.02.010 PubMedCrossRefGoogle Scholar
  38. Mayr E (1963) Animal species and evolution. Belknap Press, CambridgeGoogle Scholar
  39. Nadachowska-Brzyska K, Zielinski P, Radwan J, Babik W (2012) Interspecific hybridization increases MHC class II diversity in two sister species of newts. Mol Ecol 21(4):887–906. doi:10.1111/j.1365-294X.2011.05347.x PubMedCrossRefGoogle Scholar
  40. Nei M, Li WH (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci USA 76(10):5269–5273PubMedCrossRefGoogle Scholar
  41. Olsson M, Ujvari B, Madsen T, Uller T, Wapstra E (2004) Haldane rules: costs of outbreeding at production of daughters in sand lizards. Ecol Lett 7(10):924–928CrossRefGoogle Scholar
  42. Palo JU, Schmeller DS, Laurila A, Primmer CR, Kuzmin SL, Merila J (2004) High degree of population subdivision in a widespread amphibian. Mol Ecol 13(9):2631–2644PubMedCrossRefGoogle Scholar
  43. Podnar M, Mayer W, Tvrtković N (2005) Phylogeography of the Italian wall lizard, Podarcis sicula, as revealed by mitochondrial DNA sequences. Mol Ecol 14(2):575–588PubMedCrossRefGoogle Scholar
  44. Podnar M, Haring E, Pinsker W, Ballantine WJ (2007) Unusual origin of a nuclear pseudogene in the Italian wall lizard: intergenomic and interspecific transfer of a large section of the mitochondrial genome in the genus Podarcis (Lacertidae). J Mol Evol 64(3):308–320PubMedCrossRefGoogle Scholar
  45. Poulakakis N, Lymberakis P, Antoniou A, Chalkia D, Zouros E, Mylonas M, Valakos E (2003) Molecular phylogeny and biogeography of the wall-lizard Podarcis erhardii (Squamata: Lacertidae). Mol Phylogenet Evol 28(1):38–46PubMedCrossRefGoogle Scholar
  46. Poulakakis N, Lymberakis P, Valakos E, Pafilis P, Zouros E, Mylonas M (2005a) Phylogeography of Balkan wall lizard (Podarcis taurica) and its relatives inferred from mitochondrial DNA sequences. Mol Ecol 14(8):2433–2443PubMedCrossRefGoogle Scholar
  47. Poulakakis N, Lymberakis P, Valakos E, Zouros E, Mylonas M (2005b) Phylogenetic relationships and biogeography of Podarcis species from the Balkan Peninsula, by Bayesian and maximum likelihood analyses of mitochondrial DNA sequences. Mol Phylogenet Evol 37:845–857PubMedCrossRefGoogle Scholar
  48. R_Development_Core_Team (2011) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  49. Rhymer JM, Simberloff D (1996) Extinction by hybridization and introgression. Annu Rev Ecol Syst 27:83–109CrossRefGoogle Scholar
  50. Roman J, Darling JA (2007) Paradox lost: genetic diversity and the success of aquatic invasions. Trends Ecol Evol 22(9):454–464PubMedCrossRefGoogle Scholar
  51. Rykena S (1991) Hybridization experiments as tests for species boundaries in the genus Lacerta sensu stricto. Mitt Zool Mus Berl 67:55–68CrossRefGoogle Scholar
  52. Rykena S (1996) Experimental interspecific hybridization in the genus Lacerta. Israel J Zool 42:171–184Google Scholar
  53. Schulte U (2007) Die Mauereidechse. Laurenti Verlag, BielefeldGoogle Scholar
  54. Schulte U, Hochkirch A, Lötters S, Rödder D, Schweiger S, Weimann T, Veith M (2012) Cryptic niche conservatism among evolutionary lineages of an invasive lizard. Glob Ecol Biogeogr 21(2):198–211Google Scholar
  55. Seehausen O (2004) Hybridization and adaptive radiation. Trends Ecol Evol 19(4):198–207PubMedCrossRefGoogle Scholar
  56. Seehausen O, Terai Y, Magalhaes IS, Carleton KL, Mrosso HDJ, Miyagi R, van der Sluijs I, Schneider MV, Maan ME, Tachida H, Imai H, Okada N (2008) Speciation through sensory drive in cichlid fish. Nature 455(7213):620–626PubMedCrossRefGoogle Scholar
  57. Stelkens RB, Schmid C, Selz O, Seehausen O (2009) Phenotypic novelty in experimental hybrids is predicted by the genetic distance between species of cichlid fish. BMC Evol Biol 9(1):283PubMedCrossRefGoogle Scholar
  58. Storfer A, Murphy MA, Spear SF, Holderegger R, Waits LP (2010) Landscape genetics: where are we now? Mol Ecol 19(17):3496–3514. doi:10.1111/j.1365-294X.2010.04691.x PubMedCrossRefGoogle Scholar
  59. Stumpel AHP (2004) Reptiles and amphibians as targets for nature management. Alterra Green World Research, WageningenGoogle Scholar
  60. Taberlet P, Fumagalli L, Wust-Saucy AG, Cosson JF (1998) Comparative phylogeography and postglacial colonization routes in Europe. Mol Ecol 7(4):453–464. doi:10.1046/j.1365-294x.1998.00289.x PubMedCrossRefGoogle Scholar
  61. Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512–526PubMedGoogle Scholar
  62. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739PubMedCrossRefGoogle Scholar
  63. Uller T, Leimu R (2011) Founder events predict changes in genetic diversity during human-mediated range expansions. Glob Chang Biol 17(11):3478–3485. doi:10.1111/j.1365-2486.2011.02509.x CrossRefGoogle Scholar
  64. Vonlanthen P, Bittner D, Hudson AG, Young KA, Muller R, Lundsgaard-Hansen B, Roy D, Di Piazza S, Largiader CR, Seehausen O (2012) Eutrophication causes speciation reversal in whitefish adaptive radiations. Nature 482(7385):357–362. doi:10.1038/nature10824 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Sozos Michaelides
    • 1
  • Geoffrey M. While
    • 1
  • Celia Bell
    • 1
    • 2
  • Tobias Uller
    • 1
  1. 1.Edward Grey Institute, Department of ZoologyUniversity of OxfordOxfordUK
  2. 2.National Oceanography Centre Southampton, School of Ocean and Earth ScienceUniversity of SouthamptonSouthamptonUK

Personalised recommendations