Biological Invasions

, Volume 15, Issue 4, pp 899–910 | Cite as

Biological invasions in soil: DNA barcoding as a monitoring tool in a multiple taxa survey targeting European earthworms and springtails in North America

  • David PorcoEmail author
  • Thibaud Decaëns
  • Louis Deharveng
  • Samuel W. James
  • Dariusz Skarżyński
  • Christer Erséus
  • Kevin R. Butt
  • Benoit Richard
  • Paul D. N. Hebert
Original Paper


Biological invasions are increasingly recognized as a potent force altering native ecosystems worldwide. Many of the best documented cases involve the massive invasions of North America by plant and animal taxa native to Europe. In this study, we use DNA barcoding to survey the occurrence and genetic structure of two major groups of soil invertebrates in both their native and introduced ranges: Collembola and earthworms. Populations of ten species of earthworms and five species of Collembola were barcoded from both continents. Most of these species exhibited a similar genetic structure of large and stable populations in North America and Europe, a result supporting a scenario of multiple invasions. This was expected for earthworm species involved in human economic activities, but not foreseen for Collembola species de facto unintentionally introduced. This study also establishes that invasive species surveys employing DNA barcoding gain additional resolution over those based on morphology as they allow evaluation of cryptic lineages exhibiting different invasion histories.


Invasion survey Underground Molecular taxonomy Springtails Lumbricidae Anthropic dispersion 



This work was supported by grants to PDNH from NSERC and from the government of Canada through Genome Canada and the Ontario Genomics Institute, (SCALE) research federation through the “Functions and Determinants of Biodiversity” (BIODIV) program. D. Porco was supported by post-doctoral fellowships grant from the Conseil Régional de Haute Normandie and from NSERC. C. Erséus was supported by the Swedish Taxonomy Initiative (ArtDatabanken), and the Adlerbert Research Foundation. S. James was supported by a Marie Curie France Regions fellowship award to the Laboratoire EA 1293 ECODIV at the University of Rouen.

Supplementary material

10530_2012_338_MOESM1_ESM.eps (3 mb)
Supplementary Material Fig. 1 Frequency distribution of pairwise comparisons for intraspecific, interspecific and interlineage in Collembola (EPS 3042 kb)
10530_2012_338_MOESM2_ESM.eps (2.7 mb)
Supplementary Material Fig. 2 Frequency distribution of pairwise comparisons for intraspecific, interspecific and interlineage in Lumbricidae (EPS 2787 kb)
10530_2012_338_MOESM3_ESM.eps (1.8 mb)
Supplementary Material Fig. 3 Mismatch distributions for 5 Collembola species in North America (a–e) and Europe (f–j) (EPS 1881 kb)
10530_2012_338_MOESM4_ESM.eps (1.8 mb)
Supplementary Material Fig. 4 Mismatch distributions for 5 earthworm species in North America (a–e) and Europe (f–j) (EPS 1866 kb)
10530_2012_338_MOESM5_ESM.docx (52 kb)
Supplementary material 5 (DOCX 52 kb)


  1. Addison J (2009) Distribution and impacts of invasive earthworms in Canadian forest ecosystems. Biol Invasions 11:59–79CrossRefGoogle Scholar
  2. Amend AS, Seifert KA, Bruns TD (2010) Quantifying microbial communities with 454 pyrosequencing: does read abundance count? Mol Ecol 19:5555–5565PubMedCrossRefGoogle Scholar
  3. Armstrong KF, Ball SL (2005) DNA barcodes for biosecurity: invasive species identification. Phil Trans R Soc B-Biol Sci 360:1813–1823CrossRefGoogle Scholar
  4. Bellinger PF, Christiansen KA, Janssens F (2011) Checklist of the Collembola of the World. In:
  5. Burtelow AE, Bohlen PJ, Groffman PM (1998) Influence of exotic earthworm invasion on soil organic matter, microbial biomass and denitrification potential in forest soils of the northeastern United States. Appl Soil Ecol 9:197–202CrossRefGoogle Scholar
  6. Cameron EK, Bayne EM, Clapperton MJ (2007) Human-facilitated invasion of exotic earthworms into northern boreal forests. Ecoscience 14:482–490CrossRefGoogle Scholar
  7. Cameron EK, Bayne EM, Coltman DW (2008) Genetic structure of invasive earthworms Dendrobaena octaedra in the boreal forest of Alberta: insights into introduction mechanisms. Mol Ecol 17:1189–1197PubMedCrossRefGoogle Scholar
  8. Chahartaghi M (2007) Trophic niche differentiation, sex ratio and phylogeography of European Collembola. Ph.D. ThesisGoogle Scholar
  9. Chang CH, Rougerie R, Chen JH (2009) Identifying earthworms through DNA barcodes: pitfalls and promise. Pedobiologia 52:171–180CrossRefGoogle Scholar
  10. Chown SL, Sinclair BJ, van Vuuren BJ (2008) DNA barcoding and the documentation of alien species establishment on sub-Antarctic Marion Island. Polar Biol 31:651–655CrossRefGoogle Scholar
  11. Christiansen K, Bellinger P (1998) The collembola of North America North of the Rio Grande. A taxonomic analysis. Grinnell College, Grinnell, pp 1–1520Google Scholar
  12. Convey P, Greenslade P, Arnold RJ et al (1999) Collembola of sub-Antarctic South Georgia. Polar Biol 22:1–6CrossRefGoogle Scholar
  13. Darling JA, Blum MJ (2007) DNA-based methods for monitoring invasive species: a review and prospectus. Biol Invasions 9:751–765CrossRefGoogle Scholar
  14. Decaëns T, Jiménez JJ, Gioia C et al (2006) The values of soil animals for conservation biology. Eur J Soil Biol 42:S23–S38CrossRefGoogle Scholar
  15. Decaëns T, Porco D, Rougerie R et al. (2012) Potential of DNA barcoding for earthworm research in taxonomy and ecology. Appl Soil Ecol (in press)Google Scholar
  16. deWaard JR, Landry JF, Schmidt BC et al (2009) In the dark in a large urban park: DNA barcodes illuminate cryptic and introduced moth species. Biodivers Conserv 18:3825–3839CrossRefGoogle Scholar
  17. Eisenhauer N, Partsch S, Parkinson D et al (2007) Invasion of a deciduous forest by earthworms: changes in soil chemistry, microflora, microarthropods and vegetation. Soil Biol Biochem 39:1099–1110CrossRefGoogle Scholar
  18. Folmer O, Black M, Hoeh W et al (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotech 3:294–299Google Scholar
  19. Gabriel AGA, Chown SL, Barendse J et al (2001) Biological invasions of Southern Ocean islands: the Collembola of Marion Island as a test of generalities. Ecography 24:421–430CrossRefGoogle Scholar
  20. Gates GE (1966) Requiem for megadrile utopias. A contribution toward the understanding of the earthworm fauna of North America. Proc Biol Soc Wash 79:239–254Google Scholar
  21. Greenslade P (2002a) Assessing the risk of exotic Collembola invading subantarctic islands: prioritising quarantine management. Pedobiologia 46:338–344Google Scholar
  22. Greenslade P (2002b) Systematic composition and distribution of Australian cave collembolan faunas with notes on exotic taxa. Helictite 38:11–16Google Scholar
  23. Greenslade P (2008) Has survey effort of Australia’s islands reflected conservation and biogeographical significance? An assessment using Collembola. Eur J Soil Biol 44:458–462CrossRefGoogle Scholar
  24. Greenslade P, Convey P (2012) Exotic Collembola on subantarctic islands: pathways, origins and biology. Biol Invasions 14:405–417CrossRefGoogle Scholar
  25. Greenslade P, Wise KAJ (1984) Additions to the Collembolan fauna of the Antarctic. Trans R Soc S Aust 108:203–206Google Scholar
  26. Greenslade P, Simpson JA, Grgurinovic CA (2002) Collembola associated with fungal fruit-bodies in Australia. Pedobiologia 46:345–352Google Scholar
  27. Groffman PM, Bohlen PJ, Fisk MC et al (2004) Exotic earthworm invasion and microbial biomass in temperate forest soils. Ecosystems 7:45–54CrossRefGoogle Scholar
  28. Hajibabaei M, DeWaard JR, Ivanova NV et al (2005) Critical factors for assembling a high volume of DNA barcodes. Phil Trans R Soc B-Biol Sci 360:1959–1967CrossRefGoogle Scholar
  29. Hajibabaei M, Janzen DH, Burns JM et al (2006) DNA barcodes distinguish species of tropical Lepidoptera. Proc Natl Acad Sci USA 103:968–971PubMedCrossRefGoogle Scholar
  30. Hale CM, Frelich LE, Reich PB et al (2008) Exotic earthworm effects on hardwood forest floor, nutrient availability and native plants: a mesocosm study. Oecologia 155:509–518PubMedCrossRefGoogle Scholar
  31. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98Google Scholar
  32. Hebert PDN, Cywinska A, Ball SL et al (2003) Biological identifications through DNA barcodes. Proc R Soc Lond Ser B-Biol Sci 270:313–321CrossRefGoogle Scholar
  33. Hendrix PF, Callaham MA, Drake JM et al (2008) Pandora’s Box contained Bait: the global problem of introduced earthworms. Annu Rev Ecol Evol Syst 39:593–613CrossRefGoogle Scholar
  34. Hogg ID, Hebert PDN (2004) Biological identification of springtails (Hexapoda : Collembola) from the Canadian Arctic, using mitochondrial DNA barcodes. Can. J. Zool.–Rev. Can Zool 82:749–754CrossRefGoogle Scholar
  35. Holdsworth AR, Frelich LE, Reich PB (2008) Litter decomposition in earthworm–invaded northern hardwood forests: role of invasion degree and litter chemistry. Ecoscience 15:536–544CrossRefGoogle Scholar
  36. Hopkin SP (1997) Biology of the springtails (Insecta: Collembola). Oxford University Press, New York, TokyoGoogle Scholar
  37. Ivanova NV, Dewaard JR, Hebert PDN (2006) An inexpensive, automation-friendly protocol for recovering high-quality DNA. Mol Ecol Notes 6:998–1002CrossRefGoogle Scholar
  38. James SW, Porco D, Decaëns T et al (2010) DNA barcoding reveals cryptic diversity in Lumbricus terrestris L., 1758 (Clitellata): resurrection of L. herculeus (Savigny, 1826). PLoS ONE 5:e15629PubMedCrossRefGoogle Scholar
  39. Janion C, Worland MR, Chown SL (2009) Assemblage level variation in springtail lower lethal temperature: the role of invasive species on sub-Antarctic Marion Island. Physiol Entomol 34:284–291CrossRefGoogle Scholar
  40. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide-sequences. J Mol Evol 16:111–120PubMedCrossRefGoogle Scholar
  41. King KL, Greenslade P, Hutchinson KJ (1985) Collembolan associations in natural versus improved pastures of the New-England tableland, NSW: distribution of native and introduced species. Aust J Ecol 10:421–427CrossRefGoogle Scholar
  42. King RA, Tibble AL, Symondson WOC (2008) Opening a can of worms: unprecedented sympatric cryptic diversity within British lumbricid earthworms. Mol Ecol 17:4684–4698PubMedCrossRefGoogle Scholar
  43. Letunic I, Bork P (2007) Interactive Tree Of Life (iTOL): an online tool for phylogenetic tree display and annotation. Bioinformatics 23:127–128PubMedCrossRefGoogle Scholar
  44. Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452PubMedCrossRefGoogle Scholar
  45. Maynard EA (1951) A monograph of the Collembola or springtail insects of New York state. Comstock Publishing Company Inc, IthacaGoogle Scholar
  46. McLean MA, Parkinson D (2000) Field evidence of the effects of the epigeic earthworm Dendrobaena octaedra the microfungal community in pine forest floor. Soil Biol Biochem 32:351–360Google Scholar
  47. McLean MA, Migge-Kleian S, Parkinson D (2006) Earthworm invasions of ecosystems devoid of earthworms: effects on soil microbes. Biol Invasions 8:1257–1273CrossRefGoogle Scholar
  48. Myburgh M, Chown SL, Daniels SR et al (2007) Population structure, propagule pressure, and conservation biogeography in the sub-Antarctic: lessons from indigenous and invasive springtails. Divers Distrib 13:143–154CrossRefGoogle Scholar
  49. Olden JD, Poff NL, Douglas MR et al (2004) Ecological and evolutionary consequences of biotic homogenization. Trends Ecol Evol 19:18–24PubMedCrossRefGoogle Scholar
  50. Oliver I, Garden D, Greenslade PJ et al (2005) Effects of fertiliser and grazing on the arthropod communities of a native grassland in South-Eastern Australia. Agric Ecosyst Environ 109:323–334CrossRefGoogle Scholar
  51. Pérez-Losada M, Ricoy M, Marshall JC et al (2009) Phylogenetic assessment of the earthworm Aporrectodea caliginosa species complex (Oligochaeta: Lumbricidae) based on mitochondrial and nuclear DNA sequences. Mol Phylogenet Evol 52:293–302PubMedCrossRefGoogle Scholar
  52. Piearce TG (1972) Acid intolerant and ubiquitous Lumbricidae in selected habitats in North Wales. J Anim Ecol 41:397CrossRefGoogle Scholar
  53. Porco D, Bedos A, Deharveng L (2010a) Description and DNA barcoding assessment of the new species Deutonura gibbosa (Collembola: Neanuridae: Neanurinae), a common springtail of Alps and Jura. Zootaxa 2639:59–68Google Scholar
  54. Porco D, Rougerie R, Deharveng L et al (2010b) Coupling non-destructive DNA extraction and voucher retrieval for small soft-bodied Arthropods in a high-throughput context: the example of Collembola. Mol Ecol Resour 10:942–945PubMedCrossRefGoogle Scholar
  55. Porco D, Potapov M, Bedos A et al (2012) Cryptic diversity in the ubiquist species Parisotoma notabilis (Collembola, Isotomidae): a long used chimeric species? PLoS One (in press)Google Scholar
  56. Potapov M (2001) Isotomidae. Staatliches Museum für Naturkunde GörlitzGoogle Scholar
  57. Primack RB (2000) A primer of conservation biology, 2nd edn. Sinauer Associates, SunderlandGoogle Scholar
  58. Reynolds JW (1973) The earthworms of Connecticut (Oligochaeta: Lumbricidae, Megascolecidae and Sparganophilidae). Megadrilogica 1:1–4Google Scholar
  59. Richard B, Decaëns T, Rougerie R et al (2010) Re-integrating earthworm juveniles into soil biodiversity studies: species identification through DNA barcoding. Mol Ecol Resour 10:606–614PubMedCrossRefGoogle Scholar
  60. Rodman JE, Cody JH (2003) The taxonomic impediment overcome: NSF’s partnerships for enhancing expertise in taxonomy (PEET) as a model. Syst Biol 52:428–435PubMedGoogle Scholar
  61. Roman J, Darling JA (2007) Paradox lost: genetic diversity and the success of aquatic invasions. Trends Ecol Evol 22:454–464Google Scholar
  62. Rougerie R, Decaëns T, Deharveng L et al (2009) DNA barcodes for soil animal taxonomy. Pesqui Agropecu Bras 44:789–802CrossRefGoogle Scholar
  63. Saitou N, Nei M (1987) The neighbor-joining method—a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  64. Salmon JT (1941) The Collembolan Fauna of New Zealand, including a discussion of its distribution and affinities. Trans R Soc N Z 70:282–431Google Scholar
  65. Slabber S, Worland MR, Leinaas HP et al (2007) Acclimation effects on thermal tolerances of springtails from sub-Antarctic Marion Island: indigenous and invasive species. J Insect Physiol 53:113–125PubMedCrossRefGoogle Scholar
  66. Stach J (1966) On the Collembola of Newfoundland and Nova Scotia. Acta Zool Crac 11:211–222Google Scholar
  67. Suárez ER, Pelletier DM, Fahey TJ et al (2004) Effects of exotic earthworms on soil phosphorus cycling in two broadleaf temperate forests. Ecosystems 7:28–44CrossRefGoogle Scholar
  68. Suárez ER, Fahey TJ, Yavitt JB et al (2006) Patterns of litter disappearance in a northern hardwood forest invaded by exotic earthworms. Ecol Appl 16:154–165PubMedCrossRefGoogle Scholar
  69. Tamura K, Dudley J, Nei M et al (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599PubMedCrossRefGoogle Scholar
  70. Tiunov AV, Hale CM, Holdsworth AR et al (2006) Invasion patterns of Lumbricidae into the previously earthworm–free areas of northeastern Europe and the western Great Lakes region of North America. Biol Invasions 8:1223–1234CrossRefGoogle Scholar
  71. Van De Wiel CCM, Van Der Schoot J, Van Valkenburg J et al (2009) DNA barcoding discriminates the noxious invasive plant species, floating pennywort (Hydrocotyle ranunculoides L.f.), from non-invasive relatives. Mol Ecol Resour 9:1086–1091CrossRefGoogle Scholar
  72. Vazquez DP, Simberloff D (2001) Taxonomic selectivity in surviving introduced insects in the United States. Kluwer Academic/Plenum Publ, New YorkGoogle Scholar
  73. Whalen JK (2004) Spatial and temporal distribution of earthworm patches in corn field, hayfield and forest systems of southwestern Quebec, Canada. Appl Soil Ecol 27:143–151CrossRefGoogle Scholar
  74. Wilson EO (2002) The future of life. Vintage Books, New YorkGoogle Scholar
  75. Winter M, Kuhn I, La Sorte FA et al (2010) The role of non-native plants and vertebrates in defining patterns of compositional dissimilarity within and across continents. Glob Ecol Biogeogr 19:332–342CrossRefGoogle Scholar
  76. Wironen M, Moore TR (2006) Exotic earthworm invasion increases soil carbon and nitrogen in an old-growth forest in southern Quebec. Can J For Res—Rev Can Rech For 36:845–854CrossRefGoogle Scholar
  77. Womersley H (1939) Primitive insects of South Australia. Silverfish Springtails and their allies, AdelaideGoogle Scholar
  78. Yeates GW (1991) Impact of historical changes in land-use on the soil fauna. N Z J Ecol 15:99–106Google Scholar
  79. Yeates GW, Hawke MF, Rijkse WC (2000) Changes in soil fauna and soil conditions under Pinus radiata agroforestry regimes during a 25-year tree rotation. Biol Fertil Soils 31:391–406CrossRefGoogle Scholar
  80. Yosii R (1977) Critical checklist of the Japanese species of Collembola. Contrib Biol Lab Kyoto Univ 25:141–170Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • David Porco
    • 1
    • 2
    Email author
  • Thibaud Decaëns
    • 1
  • Louis Deharveng
    • 3
  • Samuel W. James
    • 1
    • 8
  • Dariusz Skarżyński
    • 4
  • Christer Erséus
    • 5
  • Kevin R. Butt
    • 6
  • Benoit Richard
    • 1
    • 7
  • Paul D. N. Hebert
    • 2
  1. 1.Laboratoire d’Ecologie, EA 1293 ECODIV, FED SCALE, Bâtiment IRESE A, UFR Sciences et TechniquesUniversité de RouenMont Saint Aignan, CedexFrance
  2. 2.Canadian Centre for DNA BarcodingUniversity of GuelphGuelphCanada
  3. 3.Museum National d’Histoire NaturelleUMR7205 «Origine, Structure et Evolution de la Biodiversité»ParisFrance
  4. 4.Department of Evolutionary Biology and EcologyWrocław UniversityWrocławPoland
  5. 5.Department of Biology and Environmental SciencesUniversity of GothenburgGöteborgSweden
  6. 6.School of Built and Natural EnvironmentUniversity of Central LancashirePrestonUK
  7. 7.Laboratoire BioSolEsitpa-Ecole d’Ingénieurs en AgricultureMont-Saint-Aignan, CedexFrance
  8. 8.Department of BiologyUniversity of IowaIowa CityUSA

Personalised recommendations