Biological Invasions

, Volume 15, Issue 4, pp 817–828 | Cite as

The invasion history of the exotic freshwater zooplankter Daphnia lumholtzi (Cladocera, Crustacea) in North America: a genetic analysis

  • Dagmar Frisch
  • John E. Havel
  • Lawrence J. Weider
Original Paper

Abstract

Daphnia lumholtzi is a planktonic crustacean native to subtropical regions in Africa, Asia and Australia. Since its invasion to the southern USA in ~1990 it has spread across North America as far north as the Laurentian Great Lakes. We assessed invasion history using microsatellite makers and to explore the influence of mean annual temperature on the genetic structure along a latitudinal gradient in North America. Genotypic data were obtained from 9 microsatellite markers for 178 individuals from 13 populations (eight populations introduced to North America and five populations in the native range). Pairwise Fst values as well as Bayesian clustering showed a strong subdivision between native and introduced populations. Bayesian clustering identified multiple genetic clusters in recently invaded locations, suggestive of multiple invasions from various sources, including Asia and Africa. Using variation partitioning, we determined the amount of variation for genetic clusters of populations in the invaded range due to mean annual air temperature and the year of first detection. The results point to a primary introduction into the southern range of North America, with a subsequent northward expansion, and multiple introductions possibly from both the native range and by secondary spread from previously-invaded locations. Separate analysis of genetic clusters within the invaded range suggests additional effects of temperature conditions on geographic genetic structure, possibly as a consequence of D. lumholtzi’s tropical origin.

Keywords

Biological invasion Macrogeographic genetic structure Range expansion Zooplankton Population genetics Microsatellites 

Supplementary material

10530_2012_329_MOESM1_ESM.doc (122 kb)
Supplementary material 1 (DOC 122 kb)

References

  1. Ascunce MS, Yang C-C, Oakey J, Calcaterra L, Wu W-J, Shih C-J, Goudet J, Ross KG, Shoemaker D (2011) Global invasion history of the fire ant Solenopsis invicta. Science 331:1066–1068PubMedCrossRefGoogle Scholar
  2. Benzie JAH (2005) Cladocera: the genus Daphnia (including Daphniopsis). Guides to the identification of the microinvertebrates of the continental waters of the world. Backhuys, Leiden, pp 368Google Scholar
  3. Carlsson J (2008) Effects of microsatellite null alleles on assignment testing. J Hered 99:616–623PubMedCrossRefGoogle Scholar
  4. Chapuis MP, Estoup A (2007) Microsatellite null alleles and estimation of population differentiation. Mol Biol Evol 24:621–631PubMedCrossRefGoogle Scholar
  5. Cristescu MEA, Hebert PDN, Witt JDS, MacIsaac HJ, Grigorovich IA (2001) An invasion history for Cercopagis pengoi based on mitochondrial gene sequences. Limnol Oceanogr 46:224–229CrossRefGoogle Scholar
  6. Dlugosch KM, Parker IM (2008) Founding events in species invasions: genetic variation, adaptive evolution, and the role of multiple introductions. Mol Ecol 17:431–449Google Scholar
  7. Earl DA (2011) Structure harvester v0.6.1. http://taylor0.biology.ucla.edu/structureHarvester/
  8. Estoup A, Guillemaud T (2010) Reconstructing routes of invasion using genetic data: why, how and so what? Mol Ecol 19:4113–4130CrossRefGoogle Scholar
  9. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620PubMedCrossRefGoogle Scholar
  10. Fitzpatrick BM, Fordyce JA, Niemiller ML, Reynolds RG (2012) What can DNA tell us about biological invasions? Biol Invasions 14:245–253CrossRefGoogle Scholar
  11. Frisch D, Weider LJ (2010) Seasonal shifts in genotype frequencies in the invasive cladoceran Daphnia lumholtzi in Lake Texoma, USA. Freshw Biol 55:1327–1336CrossRefGoogle Scholar
  12. Green J (1971) Associations of Cladocera in the zooplankton of the lake sources of the White Nile. J Zool Lond 165:373–414CrossRefGoogle Scholar
  13. Green J (1995) Altitudinal distribution of tropical planktonic Cladocera. Hydrobiologia 307:75–84CrossRefGoogle Scholar
  14. Havel JE, Hebert PDN (1993) Daphnia lumholtzi in North America—another exotic zooplankter. Limnol Oceanogr 38:1823–1827CrossRefGoogle Scholar
  15. Havel JE, Medley KA (2006) Biological invasions across spatial scales: intercontinental, regional, and local dispersal of cladoceran zooplankton. Biol Invasions 8:459–473CrossRefGoogle Scholar
  16. Havel JE, Shurin JB (2004) Mechanisms, effects, and scales of dispersal in freshwater zooplankton. Limnol Oceanogr 49:1229–1238CrossRefGoogle Scholar
  17. Havel JE, Stelzleni-Schwent J (2000) Zooplankton community structure: the role of dispersal. Verhandlungen der Internationalen Vereinigung fur Theoretische und Angewandte Limnologie 27:3264–3268Google Scholar
  18. Havel JE, Colbourne JK, Hebert PDN (2000) Reconstructing the history of intercontinental dispersal in Daphnia lumholtzi by use of genetic markers. Limnol Oceanogr 45:1414–1419CrossRefGoogle Scholar
  19. Havel JE, Shurin JB, Jones JR (2002) Estimating dispersal from patterns of spread: spatial and local control of lake invasions. Ecology 83:3306–3318CrossRefGoogle Scholar
  20. Hillis DM, Moritz C, Mable BK (1990) Molecular systematics. Sinauer & Associates, Sunderland, USAGoogle Scholar
  21. Hubisz MJ, Falush D, Stephens M, Pritchard JK (2009) Inferring weak population structure with the assistance of sample group information. Mol Ecol Resour 9:1322–1332PubMedCrossRefGoogle Scholar
  22. Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23:1801–1806PubMedCrossRefGoogle Scholar
  23. Jansen B, Geldof S, De Meester L, Orsini L (2011) Isolation and characterization of microsatellite markers in the waterflea Daphnia magna. Mol Ecol Resour 11:418–421PubMedCrossRefGoogle Scholar
  24. Jensen JL, Bohonak AJ, Kelley ST (2005) Isolation by distance, web service. BMC Genet 6:13. v.3.21. http://ibdws.sdsu.edu/
  25. Kelly DW, Muirhead JR, Heath DD, MacIsaac HJ (2006) Contrasting patterns in genetic diversity following multiple invasions of fresh and brackish waters. Mol Ecol 15:3641–3653PubMedCrossRefGoogle Scholar
  26. Kolbe JJ, Glor RE, Schettino LRG, Lara AC, Larson A, Losos JB (2004) Genetic variation increases during biological invasion by a Cuban lizard. Nature 431:177–181PubMedCrossRefGoogle Scholar
  27. Lachmuth S, Durka W, Schurr FM (2010) The making of a rapid plant invader: genetic diversity and differentiation in the native and invaded range of Senecio inaequidens. Mol Ecol 19:3952–3967PubMedCrossRefGoogle Scholar
  28. MacIsaac HJ, Grigorovich IA, Hoyle JA, Yan ND, Panov VE (1999) Invasion of Lake Ontario by the Ponto-Caspian predatory cladoceran Cercopagis pengoi. Can J Fish Aquat Sci 56:1–5Google Scholar
  29. Montero-Pau J, Gomez A, Muñoz J (2008) Application of an inexpensive and high-throughput genomic DNA extraction method for the molecular ecology of zooplanktonic diapausing eggs. Limnol Oceanogr Methods 6:218–222CrossRefGoogle Scholar
  30. Nei M, Maruyama T, Chakraborty R (1975) Bottleneck effect and genetic-variability in populations. Evolution 29:1–10CrossRefGoogle Scholar
  31. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedGoogle Scholar
  32. Reusch TBH, Bolte S, Sparwel M, Moss AG, Javidpour J (2010) Microsatellites reveal origin and genetic diversity of Eurasian invasions by one of the world’s most notorious marine invader, Mnemiopsis leidyi (Ctenophora). Mol Ecol 19:2690–2699PubMedCrossRefGoogle Scholar
  33. Roman J, Darling JA (2007) Paradox lost: genetic diversity and the success of aquatic invasions. Trends Ecol Evol 22:454–464PubMedCrossRefGoogle Scholar
  34. Rosenberg NA (2004) DISTRUCT: a program for the graphical display of population structure. Mol Ecol Notes 4:137–138CrossRefGoogle Scholar
  35. Routtu J, Jansen B, Colson I, De Meester L, Ebert D (2010) The first-generation Daphnia magna linkage map. BMC Genomics 11:508PubMedCrossRefGoogle Scholar
  36. Seutin G, White BN, Boag PT (1991) Preservation of avian blood and tissue samples for DNA analyses. Can J Zool 69:82–90CrossRefGoogle Scholar
  37. Simoes NR, Robertson BA, Lansac-Toha FA, Takahashi EM, Bonecker CC, Velho LFM, Joko CY (2009) Exotic species of zooplankton in the Upper Parana River floodplain, Daphnia lumholtzi Sars, 1885 (Crustacea: Branchiopoda). Braz J Biol 69:551–558PubMedCrossRefGoogle Scholar
  38. Sorensen KH, Sterner RW (1992) Extreme cyclomorphosis in Daphnia lumholtzi. Freshw Biol 28:257–262CrossRefGoogle Scholar
  39. Swar D, Fernando C (1979) Cladocera from Pokhara Valley, Nepal with notes on distribution. Hydrobiologia 66:113–128CrossRefGoogle Scholar
  40. Szpiech ZA, Jakobsson M, Rosenberg NA (2008) ADZE: a rarefaction approach for counting alleles private to combinations of populations. Bioinformatics 24:2498–2504PubMedCrossRefGoogle Scholar
  41. ter Braak CJF, Šmilauer P (2002) CANOCO reference manual and CanoDraw for Windows user’s guide: software for canonical community ordination (version 4.5). Microcomputer Power, Ithaca, New YorkGoogle Scholar
  42. Timms BV (1973) A limnological survey of the freshwater coastal lakes of East Gippsland, Victoria. Aust J Mar Freshw Resour 24:1–20CrossRefGoogle Scholar
  43. Yan ND, Leung B, Lewis MA, Peacor SD (2011) The spread, establishment and impacts of the spiny water flea, Bythotrephes longimanus, in temperate North America: a synopsis of the special issue. Biol Invasions 13:2423–2432CrossRefGoogle Scholar
  44. Zanata LH, Espindola ELG, Rocha O, Pereira RHG (2003) First record of Daphnia lumholtzi (Sars, 1885), exotic Cladoceran, in Sao Paulo State (Brazil). Braz J Biol 63:717–720PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Dagmar Frisch
    • 1
    • 2
  • John E. Havel
    • 3
  • Lawrence J. Weider
    • 1
    • 4
  1. 1.University of Oklahoma Biological StationKingstonUSA
  2. 2.Doñana Biological Station EBD-CSICSevillaSpain
  3. 3.Department of BiologyMissouri State UniversitySpringfieldUSA
  4. 4.Department of Biology, Program in Ecology and Evolutionary BiologyUniversity of OklahomaNormanUSA

Personalised recommendations