Advertisement

Biological Invasions

, Volume 15, Issue 3, pp 569–586 | Cite as

The impact of the ‘New Zealand flatworm’, Arthurdendyus triangulatus, on earthworm populations in the field

  • Archie K. MurchieEmail author
  • Alan W. Gordon
Original Paper

Abstract

The ‘New Zealand flatworm’, Arthurdendyus triangulatus, is a native of the South Island of New Zealand, which has established in the UK, Ireland and the Faroe Islands. In its introduced range, it is a predator of lumbricid earthworms. To assess the impact of A. triangulatus on earthworm species, flatworm distributions were manipulated into ‘high’, control and ‘low’ densities within a replicated field experiment. Earthworm biomass in the ‘high’ flatworm density treatment was significantly lower than the control or ‘low’ treatments. This was due to a reduction in the anecic species Lumbricus terrestris and, to a lesser extent, Aporrectodea longa. There was little evidence of negative effects on other earthworm species, with even a weakly positive relationship between flatworm density and epigeic biomass. Principal components analysis showed a clear separation of anecic species from A. triangulatus, but the epigeic species Lumbricus festivus and Lumbricus rubellus grouped with A. triangulatus, suggesting that they could be benefitting from reduced intraguild competition. Flatworm densities of 0.8 per m2, comparable to natural infestations in grassland, were predicted to give a reduction in total earthworm biomass of c. 20 %. The bulk of this was comprised of a reduction in anecic species biomass. In particular, it is considered that A. triangulatus poses a serious risk to L. terrestris populations, with implications for soil functioning and indigenous earthworm-feeding wildlife.

Keywords

Terrestrial flatworm Ecological impact Earthworms Manipulative experiment Lumbricus terrestris 

Notes

Acknowledgments

This study has been a long time in the completion, not only did the field work take almost 4 years but there were over 25,000 individual earthworms identified and weighed. We wish to thank the following for all their help in managing the experimental site, collecting samples and the considerable task of identifying specimens: Paul Moore, Sam Clawson, Jill Forsythe, John Anderson, Gareth Blair, Catherine Dynes, Ian Rea, Ivan Forsythe and Seamus McDaid. Clare Flanagan assisted with the statistics and Laura Murchie helped with data processing. Lastly, can we offer a sincere thank-you to the three anonymous reviewers whose insightful comments much improved the direction (e.g. community-level effects) and clarity of the manuscript. This work was funded by the Department of Agriculture and Rural Development (Northern Ireland) with additional support from the Scottish Executive Environment and Rural Affairs Department (now the Scottish Government Enterprise and Environment Directorate).

References

  1. Alford DV (1998) Potential problems posed by non-indigenous terrestrial flatworms in the United Kingdom. Pedobiologia 42(5–6):574–578Google Scholar
  2. Alford DV, Hancocks PJ, Parker WE (1995) The potential impact of New Zealand flatworm (Artioposthia triangulata) on agriculture and the environment in England and Wales. Project Number OCS 9323. Ministry of Agriculture, Fisheries and Food, Chief Scientists Group, Cambridge, UKGoogle Scholar
  3. Anonymous (1964) Annual progress report on research and technical work. Agricultural Entomology Division, Ministry of Agriculture, BelfastGoogle Scholar
  4. Baird J, Fairweather I, Murchie AK (2005a) Long-term effects of prey-availability, partnering and temperature on overall egg capsule output of ‘New Zealand flatworms’, Arthurdendyus triangulatus. Ann App Biol 146(3):289–301. doi: 10.1111/j.1744-7348.2005.040095.x CrossRefGoogle Scholar
  5. Baird J, McDowell SDR, Fairweather I, Murchie AK (2005b) Reproductive structures of Arthurdendyus triangulatus (Dendy): seasonality and the effect of starvation. Pedobiologia 49(5):435–442. doi: 10.1016/j.pedobi.2005.05.003 CrossRefGoogle Scholar
  6. Baker GH, Carter PJ, Barrett VJ (1999) Influence of earthworms, Aporrectodea spp. (Lumbricidae), on pasture production in south-eastern Australia. Aust J Agric Res 50(7):1247–1257. doi: 10.1071/AR98182 CrossRefGoogle Scholar
  7. Baker GH, Brown G, Butt K, Curry JP, Scullion J (2006) Introduced earthworms in agricultural and reclaimed land: their ecology and influences on soil properties, plant production and other soil biota. Biol Invasions 8(6):1301–1316. doi: 10.1007/s10530-006-9024-6 CrossRefGoogle Scholar
  8. Bartlett MD, Briones MJI, Neilson R, Schmidt O, Spurgeon D, Creamer RE (2010) A critical review of current methods in earthworm ecology: from individuals to populations. Eur J Soil Biol 46(2):67–73. doi: 10.1016/j.ejsobi.2009.11.006 CrossRefGoogle Scholar
  9. Bengtson SA, Nilsson A, Nordström S, Rundgren S (1976) Effect of bird predation on lumbricid populations. Oikos 27(1):9–12. doi: 10.2307/3543424 CrossRefGoogle Scholar
  10. Bengtson SA, Rundgren S, Nilsson A, Nordström S (1978) Selective predation on lumbricids by golden plover Pluvialis apricaria. Oikos 31(2):164–168. doi: 10.2307/3543559 CrossRefGoogle Scholar
  11. Blackshaw RP (1989) The effects of a calcareous seaweed product on earthworm populations in grassland soil. Biol Agric Hortic 6(1):27–33CrossRefGoogle Scholar
  12. Blackshaw RP (1990) Studies on Artioposthia triangulata (Dendy) (Tricladida, Terricola), a predator of earthworms. Ann App Biol 116(1):169–176. doi: 10.1111/j.1744-7348.1990.tb06596.x CrossRefGoogle Scholar
  13. Blackshaw RP (1991) Mortality of the earthworm Eisenia fetida (Savigny) presented to the terrestrial planarian Artioposthia triangulata (Dendy) (Tricladida, Terricola). Ann App Biol 118(3):689–694. doi: 10.1111/j.1744-7348.1991.tb05358.x CrossRefGoogle Scholar
  14. Blackshaw RP (1992) The effect of starvation on size and survival of the terrestrial planarian Artioposthia triangulata (Dendy) (Tricladida, Terricola). Ann App Biol 120(3):573–578. doi: 10.1111/j.1744-7348.1992.tb04917.x CrossRefGoogle Scholar
  15. Blackshaw RP (1995) Changes in populations of the predatory flatworm Artioposthia triangulata and its earthworm prey in grassland. Acta Zool Fenn 196:107–110Google Scholar
  16. Blackshaw RP (1996) Control options for the New Zealand flatworm. In: Brighton crop protection conference, pests & diseases, Brighton, UK, 18–21 November 1996. BCPC, pp 1089–1094Google Scholar
  17. Blackshaw RP, Stewart VI (1992) Artioposthia triangulata (Dendy, 1894), a predatory terrestrial planarian and its potential impact on lumbricid earthworms. Agric Zool Rev 5:201–219Google Scholar
  18. Blackshaw RP, Moore JP, Alston R (1996) Removal trapping to control Artioposthia triangulata. Ann App Biol 129(2):355–360. doi: 10.1111/j.1744-7348.1996.tb05758.x CrossRefGoogle Scholar
  19. Bloch D (1992) A note on the occurrence of land planarians in the Faroe Islands. Fródskaparrit 38:63–68Google Scholar
  20. Boag B (2000) The impact of the New Zealand flatworm on earthworms and moles in agricultural land in western Scotland. Asp Appl Biol 62:79–84Google Scholar
  21. Boag B, Yeates GW (2001) The potential impact of the New Zealand flatworm, a predator of earthworms, in Western Europe. Ecol Appl 11(5):1276–1286. doi: 10.2307/3060919 CrossRefGoogle Scholar
  22. Boag B, Palmer LF, Neilson R, Chambers SJ (1994) Distribution and prevalence of the predatory planarian Artioposthia triangulata (Dendy) (Tricladida: Terricola) in Scotland. Ann App Biol 124(1):165–171. doi: 10.1111/j.1744-7348.1994.tb04124.x CrossRefGoogle Scholar
  23. Boag B, Evans KA, Neilson R, Yeates GW, Johns PM, Mather JG, Christensen OM, Jones HD (1995) The potential spread of terrestrial planarians Artioposthia triangulata and Australoplana sanguinea var. alba to continental Europe. Ann App Biol 127(2):385–390. doi: 10.1111/j.1744-7348.1995.tb06682.x
  24. Boag B, Palmer LF, Neilson R, Legg R, Chambers SJ (1997) Distribution, prevalence and intensity of earthworm populations in arable land and grassland in Scotland. Ann App Biol 130(1):153–165. doi: 10.1111/j.1744-7348.1997.tb05791.x CrossRefGoogle Scholar
  25. Boag B, Yeates GW, Johns PM (1998) Limitations to the distribution and spread of terrestrial flatworms with special reference to the New Zealand flatworm (Artioposthia triangulata). Pedobiologia 42(5–6):495–503Google Scholar
  26. Boag B, Jones HD, Neilson R, Santoro G (1999) Spatial distribution and relationship between the New Zealand flatworm Arthurdendyus triangulata and earthworms in a grass field in Scotland. Pedobiologia 43(4):340–344Google Scholar
  27. Boag B, Deeks L, Orr A, Neilson R (2005) A spatio-temporal analysis of a New Zealand flatworm (Arthurdendyus triangulatus) population in western Scotland. Ann App Biol 147(1):81–88. doi: 10.1111/j.1744-7348.2005.00017.x CrossRefGoogle Scholar
  28. Boag B, Mackenzie K, McNicol JW, Neilson R (2010a) Sampling for the New Zealand flatworm. Proc Crop Prot North Brit 2010:45–50Google Scholar
  29. Boag B, Neilson R, Jones HD (2010b) Quantifying the risk to biodiversity by alien terrestrial planarians. Asp Appl Biol 104:55–61Google Scholar
  30. Bolker BM, Brooks ME, Clark CJ, Geange SW, Poulsen JR, Stevens MHH, White J-SS (2009) Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol Evol 24(3):127–135. doi: 10.1016/j.tree.2008.10.008 CrossRefPubMedGoogle Scholar
  31. Bouché MB (1971) Relations entre les structures spatiales et fonctionelles des ecosystems, illustrées par le role pédobiologique des vers de terre. In: Pesson P (ed) La Vie dans les Sols, Aspects Nouveaux, Études Experimentales Gauthier-Villars, Paris, pp 187–209Google Scholar
  32. Bouché MB (1977) Strategies lombriciennes. In: Lohm U, Persson T (eds) Soil organisms as components of the ecosystem, vol 25. Ecological bulletins (Stockholm). Swedish Natural Science Research Council, Stockholm, pp 122–132Google Scholar
  33. Boyle KE, Curry JP, Farrell EP (1997) Influence of earthworms on soil properties and grass production in reclaimed cutover peat. Biol Fertil Soils 25(1):20–26. doi: 10.1007/s003740050274 CrossRefGoogle Scholar
  34. Butt KR (1993) Reproduction and growth of three deep-burrowing earthworms (Lumbricidae) in laboratory culture in order to assess production for soil restoration. Biol Fertil Soils 16(2):135–138. doi: 10.1007/bf00369415 CrossRefGoogle Scholar
  35. Butt KR (2011) Food quality affects production of Lumbricus terrestris (L.) under controlled environmental conditions. Soil Biol Biochem 43(10):2169–2175. doi: 10.1016/j.soilbio.2011.06.021 CrossRefGoogle Scholar
  36. Cannon RJC, Baker RHA, Taylor MC, Moore JP (1999) A review of the status of the New Zealand flatworm in the UK. Ann App Biol 135(3):597–614. doi: 10.1111/j.1744-7348.1999.tb00892.x CrossRefGoogle Scholar
  37. Chan K-Y, Munro K (2001) Evaluating mustard extracts for earthworm sampling. Pedobiologia 45(3):272–278CrossRefGoogle Scholar
  38. Christensen OM, Mather JG (1998) The ‘New Zealand flatworm’, Artioposthia triangulata, in Europe: the Faroese situation. Pedobiologia 42(5–6):532–540Google Scholar
  39. Cleary GP, Corner LAL, O’Keeffe J, Marples NM (2009) The diet of the badger Meles meles in the Republic of Ireland. Mamm Biol 74(6):438–447. doi: 10.1016/j.mambio.2009.07.003 Google Scholar
  40. Clements RO, Murray PJ, Bentley BR, Henderson IF (1990) Herbage yield and botanical composition over 20 years of a predominantly ryegrass sward treated frequently with phorate pesticide and 3 rates of nitrogen-fertilizer. J Agric Sci 115:23–27. doi: 10.1017/S0021859600073871 CrossRefGoogle Scholar
  41. Clements RO, Murray PJ, Sturdy RG (1991) The impact of 20 years’ absence of earthworms and three levels of N fertiliser on a grassland soil environment. Agric Ecosyst Environ 36(1–2):75–85. doi: 10.1016/0167-8809(91)90037-X CrossRefGoogle Scholar
  42. DARD (2011) Statistical review of Northern Ireland agriculture 2010. Department of Agriculture and Rural Development, Policy and Economics Division, BelfastGoogle Scholar
  43. Darwin CR (1859) On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life. John Murray, LondonGoogle Scholar
  44. Ducey PK, West L-J, Shaw G, De Lisle J (2005) Reproductive ecology and evolution in the invasive terrestrial planarian Bipalium adventitium across North America. Pedobiologia 49(4):367–377. doi: 10.1016/j.pedobi.2005.04.002 CrossRefGoogle Scholar
  45. Ducey PK, McCormick M, Davidson E (2007) Natural history observations on Bipalium cf. vagum Jones and Sterrer (Platyhelminthes: Tricladida), a terrestrial broadhead planarian new to North America. Southeast Nat 6(3):449–460. doi: 10.1656/1528-7092(2007)6[449:nhoobc]2.0.co;2
  46. Dynes C, Fleming CC, Murchie AK (2001) Genetic variation in native and introduced populations of the ‘New Zealand flatworm’, Arthurdendyus triangulatus. Ann App Biol 139(2):165–174. doi: 10.1111/j.1744-7348.2001.tb00393.x CrossRefGoogle Scholar
  47. Edwards CA, Bohlen PJ (1996) Biology and ecology of earthworms, 3rd edn. Chapman & Hall, LondonGoogle Scholar
  48. Eijsackers H (2011) Earthworms as colonizers of natural and cultivated soil environments. Appl Soil Ecol 50:1–13. doi: 10.1016/j.apsoil.2011.07.008 CrossRefGoogle Scholar
  49. Evans AC, Guild WJ (1948) Studies on the relationships between earthworms and soil fertility. IV. On the life cycles of some British Lumbricidae. Ann App Biol 35(4):471–484CrossRefGoogle Scholar
  50. Fraser PM, Boag B (1998) The distribution of lumbricid earthworm communities in relation to flatworms: a comparison between New Zealand and Europe. Pedobiologia 42(5–6):542–553Google Scholar
  51. Funmilayo O (1977) Distribution and abundance of moles (Talpa europaea L.) in relation to physical habitat and food supply. Oecologia 30(3):277–283. doi: 10.1007/bf01833635 CrossRefGoogle Scholar
  52. Gibson PH, Cosens D, Buchanan K (1997) A chance field observation and pilot laboratory studies of predation of the New Zealand flatworm by the larvae and adults of carabid and staphylinid beetles. Ann App Biol 130(3):581–585. doi: 10.1111/j.1744-7348.1997.tb07684.x CrossRefGoogle Scholar
  53. Goszczyński J, Jedrzejewska B, Jedrzejewski W (2000) Diet composition of badgers (Meles meles) in a pristine forest and rural habitats of Poland compared to other European populations. J Zool 250(4):495–505. doi: 10.1111/j.1469-7998.2000.tb00792.x Google Scholar
  54. Green NC, Murchie AK (2006) In-field distributions of the New Zealand flatworm, Arthurdendyus triangulatus (Dendy). Proc Crop Prot North Brit 2006:57–62Google Scholar
  55. Gunn A (1992) The use of mustard to estimate earthworm populations. Pedobiologia 36(2):65–67Google Scholar
  56. Haria AH (1995) Hydrological and environmental impact of earthworm depletion by the New Zealand flatworm (Artioposthia triangulata). J Hydrol 171(1–2):1–3. doi: 10.1016/0022-1694(95)02734-7 CrossRefGoogle Scholar
  57. Haria AH, McGrath SP, Moore JP, Bell JP, Blackshaw RP (1998) Impact of the New Zealand flatworm (Artioposthia triangulata) on soil structure and hydrology in the UK. Sci Total Environ 215(3):259–265. doi: 10.1016/s0048-9697(98)00126-0 CrossRefPubMedGoogle Scholar
  58. Heimpel G, Frelich L, Landis D, Hopper K, Hoelmer K, Sezen Z, Asplen M, Wu K (2010) European buckthorn and Asian soybean aphid as components of an extensive invasional meltdown in North America. Biol Invasions 12(9):2913–2931. doi: 10.1007/s10530-010-9736-5 CrossRefGoogle Scholar
  59. Hoogerkamp M, Rogaar H, Eijsackers HJP (1983) Effects of earthworms on grassland on recently reclaimed polder soils in the Netherlands. In: Satchell JE (ed) Earthworm ecology: from Darwin to vermiculture. Chapman and Hall, London, pp 85–105CrossRefGoogle Scholar
  60. Johns PM (1998) The New Zealand terrestrial flatworms: a 1997–1998 perspective. Pedobiologia 42(5–6):464–468Google Scholar
  61. Johns PM, Boag B (2003) The spread and distribution of terrestrial planarians (Turbellaria: Tricladida: Geoplanidae) within New Zealand. N Z J Ecol 27(2):201–206Google Scholar
  62. Johns PM, Boag B, Yeates GW (1998) Observations on the geographic distribution of flatworms (Turbellaria: Rhynchodemidae, Bipaliidae, Geoplanidae) in New Zealand. Pedobiologia 42(5–6):469–476Google Scholar
  63. Jones HD, Boag B (1996) The distribution of New Zealand and Australian terrestrial flatworms (Platyhelminthes: Turbellaria: Tricladida: Terricola) in the British Isles—the Scottish survey and MEGALAB WORMS. J Nat Hist 30(7):955–975. doi: 10.1080/00222939600770511 CrossRefGoogle Scholar
  64. Jones HD, Santoro G, Boag B, Neilson R (2001) The diversity of earthworms in 200 Scottish fields and the possible effect of New Zealand land flatworms (Arthurdendyus triangulatus) on earthworm populations. Ann App Biol 139(1):75–92. doi: 10.1111/j.1744-7348.2001.tb00132.x CrossRefGoogle Scholar
  65. Kruuk H (1978) Foraging and spatial organisation of the European badger, Meles meles L. Behav Ecol Sociobiol 4(1):75–89. doi: 10.1007/bf00302562 CrossRefGoogle Scholar
  66. Kruuk H, Parish T (1981) Feeding specialization of the European Badger Meles meles in Scotland. J Anim Ecol 50(3):773–788. doi: 10.2307/4136 CrossRefGoogle Scholar
  67. Kruuk H, Parish T, Brown CAJ, Carrera J (1979) The use of pasture by the European badger (Meles meles). J Appl Ecol 16(2):453–459. doi: 10.2307/2402521 CrossRefGoogle Scholar
  68. Lawrence AP, Bowers MA (2002) A test of the ‘hot’ mustard extraction method of sampling earthworms. Soil Biol Biochem 34(4):549–552. doi: 10.1016/s0038-0717(01)00211-5 CrossRefGoogle Scholar
  69. Lee KE (1985) Earthworms, their ecology and relationships with soils and land use. Academic Press, LondonGoogle Scholar
  70. Lillico S, Cosens D, Gibson P (1996) Studies of the behaviour of Artioposthia triangulata (Platyhelminthes; Tricladida), a predator of earthworms. J Zool 238(3):513–520CrossRefGoogle Scholar
  71. Lowe CN, Butt KR (2002a) Growth of hatchling earthworms in the presence of adults: interactions in laboratory culture. Biol Fertil Soils 35(3):204–209. doi: 10.1007/s00374-002-0471-7 CrossRefGoogle Scholar
  72. Lowe CN, Butt KR (2002b) Influence of organic matter on earthworm production and behaviour: a laboratory-based approach with applications for soil restoration. Eur J Soil Biol 38(2):173–176. doi: 10.1016/s1164-5563(02)01141-x CrossRefGoogle Scholar
  73. MacDonald DW (1983) Predation on earthworms by terrestrial vertebrates. In: Satchell JE (ed) Earthworm ecology, from Darwin to vermiculture. Chapman and Hall, London, pp 393–414CrossRefGoogle Scholar
  74. Mellanby K (1971) The mole. The new naturalist series. Collins, LondonGoogle Scholar
  75. Moore JP, Dynes C, Murchie AK (1998) Status and public perception of the ‘New Zealand flatworm’, Artioposthia triangulata (Dendy), in Northern Ireland. Pedobiologia 42(5–6):563–571Google Scholar
  76. Moran MD (2003) Arguments for rejecting the sequential Bonferroni in ecological studies. Oikos 100(2):403–405. doi: 10.1034/j.1600-0706.2003.12010.x CrossRefGoogle Scholar
  77. Murchie AK (2010) Between two stools: dealing with the problem of the New Zealand flatworm. Asp Appl Biol 104:73–78Google Scholar
  78. Murchie AK, Mac An tSaoir S (2006) High densities of ‘New Zealand flatworms’, Arthurdenyus triangulatus (Dendy), in experimental orchard plots in Northern Ireland and implications for thatch formation. Tearmann 5:23–28Google Scholar
  79. Murchie AK, Moore JP, Walters KFA, Blackshaw RP (2003) Invasion of agricultural land by the earthworm predator, Arthurdendyus triangulatus (Dendy). Pedobiologia 47(5–6):920–923Google Scholar
  80. Neal E (1988) The stomach contents of badgers, Meles meles. J Zool 215(2):367–369. doi: 10.1111/j.1469-7998.1988.tb04904.x CrossRefGoogle Scholar
  81. Satchell JE (1967) Lumbricidae. In: Burges A, Raw F (eds) Soil biology. Academic Press, London, pp 259–322Google Scholar
  82. Scheu S (2003) Effects of earthworms on plant growth: patterns and perspectives. Pedobiologia 47(5–6):846–856. doi: 10.1078/0031-4056-00270 Google Scholar
  83. Sherlock E, Carpenter D (2009) An updated earthworm list for the British Isles and two new ‘exotic’ species to Britain from Kew Gardens. Eur J Soil Biol 45(5–6):431–435. doi: 10.1016/j.ejsobi.2009.07.002 CrossRefGoogle Scholar
  84. Shuster WD, Subler S, McCoy EL (2001) Deep-burrowing earthworm additions changed the distribution of soil organic carbon in a chisel-tilled soil. Soil Biol Biochem 33(7–8):983–996. doi: 10.1016/S0038-0717(01)00002-5 CrossRefGoogle Scholar
  85. Sims RW, Gerard BM (1999) Earthworms. Notes for the Identification of British Species, vol 31 (Revised). Synopses of the British Fauna (New Series). Field Studies Council, ShrewsburyGoogle Scholar
  86. Stewart VI (1993) The biology of the terrestrial planarian Artioposthia triangulata (Dendy, 1894) and its Genetic Variation in Colonized Habitats. PhD Dissertation, The Queen’s University of Belfast, BelfastGoogle Scholar
  87. Stockdill SMJ (1982) Effects of introduced earthworms on the productivity of New Zealand pastures. Pedobiologia 24(1):29–35Google Scholar
  88. Tolhurst BA, Delahay RJ, Walker NJ, Ward AI, Roper TJ (2009) Behaviour of badgers (Meles meles) in farm buildings: opportunities for the transmission of Mycobacterium bovis to cattle? Appl Anim Behav Sci 117(1–2):103–113. doi: 10.1016/j.applanim.2008.10.009 CrossRefGoogle Scholar
  89. Uvarov AV (2009) Inter- and intraspecific interactions in lumbricid earthworms: their role for earthworm performance and ecosystem functioning. Pedobiologia 53(1):1–27. doi: 10.1016/j.pedobi.2009.05.001 CrossRefGoogle Scholar
  90. Willis RJ, Edwards AR (1977) The occurrence of the land planarian Artioposthia triangulata (Dendy) in Northern Ireland. Irish Nat J 19(4):112–116Google Scholar
  91. Winsor L (1983) A revision of the cosmopolitan land planarian Bipalium kewense Moseley, 1878 (Turbellaria, Tricladida—Terricola). Zool J Linn Soc-Lond 79(1):61–100. doi: 10.1111/j.1096-3642.1983.tb01161.x CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Agri-Food and Biosciences InstituteBelfastNorthern Ireland, UK

Personalised recommendations