Biological Invasions

, Volume 15, Issue 2, pp 283–293 | Cite as

There goes the neighborhood: apparent competition between invasive and native orchids mediated by a specialist florivorous weevil

  • Wilnelia Recart
  • James D. Ackerman
  • Ana A. Cuevas
Original Paper

Abstract

The exotic orchid, Spathoglottis plicata, has naturalized and spread rapidly over Puerto Rico where it is generally considered to be innocuous. It is abundant and occupies the same habitat as the native orchid, Bletia patula. The two are hosts to the same native weevil, Stethobaris polita, a specialist on orchid flowers. We ask whether the weevils mediate apparent competition between the two orchids. We monitored weevil populations, floral damage and fruit set in B. patula in the presence and absence of S. plicata. We also experimentally tested whether weevils preferred one species over the other. Finally, we modeled the distribution of both orchid species to predict the extent by which the two species may interact in Puerto Rico. We found a significantly lower number of weevils and a higher fruit set for B. patula where S. plicata is absent, indicative that apparent competition is occurring. The choice experiments show that weevils prefer flowers of S. plicata over those of B. patula, but B. patula still sustained considerable damage. The current distribution of the native B. patula is nearly limited to the northern karst region of Puerto Rico. The naturalized S. plicata has a broader range and the models predict that its distribution will strongly overlap with that of B. patula. We expect the S. plicata invasion to continue and affect native orchids through apparent competition as long as the presence of S. plicata maintains elevated weevil populations. Thus, even seemingly harmless invasive orchids can have subtle but significant negative consequences.

Keywords

Herbivory Indirect effects Multiple species interactions Florivory Apparent competition Biological invasions 

Notes

Acknowledgments

We thank Curt Daehler, Daniel Diaz, Nadia Flores, Wilfredo Falcón and Raymond Tremblay for helping with the species distribution modeling, GIS techniques and statistics. We are also grateful to Wildelina González, Ricardo Arriaga and Eduardo Otero for serving as field assistants. Constructive criticisms from anonymous reviewers were much appreciated. This work was supported by funds from NSF-UMEB: Undergraduate research on tropical ecosystems: from rainforest to cities (DBI-0602642, Alonso Ramírez PI), NSF-CREST (HRD-0734826, Elvira Cuevas PD), Ecological Society of America SEEDs program, and USDA Faculty and Student Training fellowships.

References

  1. Ackerman JD (1986) Mechanisms and evolution of food-deceptive pollination systems in orchids. Lindleyana 1:108–113Google Scholar
  2. Ackerman JD (1989) Limitations to sexual reproduction in Encyclia krugii (Orchidaceae). Syst Bot 14:101–109. doi:10.2307/2419054 CrossRefGoogle Scholar
  3. Ackerman JD (1995) An orchid flora of Puerto Rico and the Virgin Islands. Mem New York Bot Gard 73:1–203Google Scholar
  4. Ackerman JD (2007) Invasive orchids: weeds we hate to love? Lankesteriana 7:19–21Google Scholar
  5. Ackerman JD (2012a) Orchidaceae. In: Acevedo P, Strong M (eds) Catalogue of seed plants of the West Indies. Smithsonian Contrib Bot 98: 622–667. http://hdl.handle.net/10088/17551
  6. Ackerman JD (2012b) Orchids gone wild: discovering naturalized orchids in Hawaii. Orchids 81:88–93Google Scholar
  7. Ackerman JD, Carromero W (2005) Is reproductive success related to color polymorphism in a deception pollinated tropical terrestrial orchid? Caribb J Sci 41:234–242Google Scholar
  8. Ackerman JD, Sabat A, Zimmerman JK (1996) Seedling establishment in an epiphytic orchid: an experimental study of seed limitation. Oecologia 106:192–198. doi:10.1007/BF00328598 CrossRefGoogle Scholar
  9. Barbosa P, Hines J, Kaplan I, Martinson H, Szczepaniec A, Szendrei Z (2009) Associational resistance and associational susceptibility: having right or wrong neighbors. Annu Rev Ecol Evol Syst 40:1–20. doi:10.1146/annurev.ecolsys.110308.120242 CrossRefGoogle Scholar
  10. Bonnardeaux Y, Brundrett M, Batty A, Dixon K, Koch J, Sivasithamparam K (2007) Diversity of mycorrhizal fungi of terrestrial orchids: compatibility web, brief encounters, lasting relationships and alien invasions. Mycol Res 111:51–61. doi:10.1016/j.mycres.2006.11.006 PubMedCrossRefGoogle Scholar
  11. Calvo RN, Horvitz C (1990) Pollinator limitation, cost of reproduction, and fitness in plants: transition matrix demographic approach. Am Nat 136:499–516. doi:10.1086/285110 CrossRefGoogle Scholar
  12. Cariveau D, Irwin RE, Brody AK, García Mayeya L, von der Ohe A (2004) Direct and indirect effects of pollinators and seed predators to selection on plant and floral traits. Oikos 104:15–26. doi:10.1111/j.0030-1299.2004.12641.x CrossRefGoogle Scholar
  13. Catling PM (1990) Auto-pollination in the Orchidaceae. In: Arditti J (ed) Orchid biology: reviews and perspectives. V. Timber Press, Portland, pp 121–158Google Scholar
  14. Cuartas-Domínguez M, Medel R (2010) Pollinator-mediated selection and experimental manipulation of the flower phenotype in Chloraea bletioides. Funct Ecol 24:1219–1227. doi:10.1111/j.1365-2435.2010.01737.x CrossRefGoogle Scholar
  15. Daehler CC (2006) Invasibility of tropical islands by introduced plants: partitioning the influence of isolation and propagule pressure. Preslia 78:389–404Google Scholar
  16. Darwin CR (1877) The various contrivances by which orchids are fertilized by insects, 2nd edn. John Murray, LondonGoogle Scholar
  17. Departamento de Recursos Naturales y Ambientales (DRNA), Estado Libre Asociado de Puerto Rico (2007) Bosques de Puerto Rico: El Bosque de Río Abajo. Hojas de nuestro ambiente. P-023. http://www.drna.gobierno.pr/biblioteca/publicaciones/hojas-de-nuestro-ambiente/23-Rio%20Abajo.pdf. Accessed 24 Aug 2011
  18. Dressler RL (1968) Notes on Bletia (Orchidaceae). Brittonia 20:182–190CrossRefGoogle Scholar
  19. Dressler RL (1981) The orchids: natural history and classification. Harvard University Press, Cambridge MassGoogle Scholar
  20. Ewel JJ, Whitmore JL (1973) The ecological life zones of Puerto Rico and the U.S. Virgin Islands. Forest service research paper ITF-18, Department of Agriculture and Institute of Tropical Forestry, Forest Service, USGoogle Scholar
  21. Gordon DR (1998) Effects of invasive, non-indigenous plant species on ecosystem processes: lessons from Florida. Ecol Appl 8:975–989. doi:10.1890/1051-0761(1998)008[0975:EOINIP]2.0.CO;2 CrossRefGoogle Scholar
  22. Holt RD (1977) Predation, apparent competition, and the structure of prey communities. Theor Popul Biol 12:197–229PubMedCrossRefGoogle Scholar
  23. Holt RD, Hochberg ME (2001) Indirect interactions, community modules and biological control: a theoretical perspective. In: Wajnberg E, Scott JK, Quimby PC (eds) Evaluating indirect ecological effects of biological control, 1st edn. CABI, New York, pp 13–38Google Scholar
  24. Hoogendoorn M, Heimpel GE (2002) Indirect interactions between an introduced and a native ladybird beetle species mediated by a shared parasitoid. Biol Control 25:224–230. doi:10.1016/S1049-9644(02)00101-9 CrossRefGoogle Scholar
  25. Johnson SD, Peter CI, Agren J (2004) The effects of nectar addition on pollen removal and geitonogamy in the non-rewarding orchid, Anacamptis morio. Proc R Soc Lond B-Biol Sci 271:803–809. doi:10.1098/rspb.2003.2659 CrossRefGoogle Scholar
  26. Keane RM, Crawley MJ (2002) Exotic plant invasions and the enemy release hypothesis. Trends Eco Evol 17:164–170. doi:10.1016/S0169-5347(02)02499-0 CrossRefGoogle Scholar
  27. Kores PJ (1979) Taxonomy and pollination in the wild Hawaiian orchids. M.S. Thesis, University of Hawai’i, ManoaGoogle Scholar
  28. Kueffer C, Daehler CC, Torres-Santana CW, Lavergne C, Meyer J, Otto R, Silva L (2010) A global comparison of plant invasions on oceanic islands. Perspect Plant Ecol Evol Syst 12:145–161. doi:10.1016/j.ppees.2009.06.002 CrossRefGoogle Scholar
  29. Lau JA, Strauss SY (2005) Insect herbivores drive important indirect effects of exotic plants on native communities. Ecology 86:2990–2997. doi:10.1890/04-1779 CrossRefGoogle Scholar
  30. Leavitt H, Robertson IC (2006) Petal herbivory by chrysomelid beetles (Phyllotreta sp.) is detrimental to pollination and seed production in Lepidium papilliferum (Brassicaceae). Ecol Entomol 31:657–660. doi:10.1111/j.1365-2311.2006.00820.x CrossRefGoogle Scholar
  31. Light MHS, Macconaill M (2011) Potential impact of insect herbivores on orchid conservation. Euro J Environ Sci 1:115–124Google Scholar
  32. Liu C, Berry PM, Dawson TP, Pearson R (2005) Selecting thresholds of occurrence in the prediction of species distributions. Ecography 28:385–393. doi:10.1111/j.0906-7590.2005.03957.x CrossRefGoogle Scholar
  33. Lockwood JL, Hoopes MF, Marchetti MP (2007) Invasion ecology, 2nd edn. Blackwell, LondonGoogle Scholar
  34. Lowe S, Browne M, Boudjelas S, De Poorter M (2000) 100 of the world’s worst invasive alien species. A selection from the global invasive species database. Invasive Species Specialist Group, Species Survival Commission, International Union for Conservation of Nature, AuklandGoogle Scholar
  35. Malo JE, Leirana-Alcocer J, Parra-Tabla V (2001) Population fragmentation, florivory, and the effects of flower morphology alterations on the pollination success of Myrmecophila tibicinis (Orchidaceae). Biotropica 33:529–534. doi:10.1646/0006-3606(2001)033[0529:PFFATE]2.0.CO;2 Google Scholar
  36. McCall AC (2008) Florivory affects pollinator visitation and female fitness in Nemophila menziesii. Oecologia 155:729–737. doi:10.1007/s00442-007-0934-5 PubMedCrossRefGoogle Scholar
  37. McCall AC, Irwin RE (2006) Florivory: the intersection of pollination and herbivory. Ecol Lett 9:1351–1365. doi:10.1111/j.1461-0248.2006.00975.x PubMedCrossRefGoogle Scholar
  38. Meléndez-Ackerman EJ, Ackerman JD, Rodríguez-Robles JA (2000) Reproduction in an orchid can be resource-limited over its lifetime. Biotropica 32:282–290. doi:10.1646/0006-3606(2000)032[0282:RIAOCB]2.0.CO;2 Google Scholar
  39. Montalvo AM, Ackerman JD (1987) Limitations to natural fruit production in Ionopsis utricularioides (Orchidaceae). Biotropica 19:24–31CrossRefGoogle Scholar
  40. Nilsson LA (1992) Orchid pollination biology. Trends Ecol Evol 7:255–258. doi:10.1016/0169-5347(92)90170-G CrossRefGoogle Scholar
  41. Nir M (2000) Orchidaceae Antillanae. DAG Media Publishing, New YorkGoogle Scholar
  42. Noonburg EG, Byers JE (2005) More harm than good: when invader vulnerability to predators enhances impact on native species. Ecology 86:2555–2560. doi:10.1890/05-0143 CrossRefGoogle Scholar
  43. O’Brien CW, Turnbow RH Jr (2011) An annotated list of Curculionidae (Coleoptera) of Dominica (excluding Scolytinae and Platypodidae). Insecta Mundi 0179:1–31Google Scholar
  44. Orrock JL, Witter MS, Reichman OJ (2008) Apparent competition with an exotic plant reduces native plant establishment. Ecology 89:1168–1174. doi:10.1890/07-0223.1 PubMedCrossRefGoogle Scholar
  45. Parachnowitsch AL, Caruso CM (2008) Predispersal seed herbivores, not pollinators, exert selection on floral traits via female fitness. Ecology 89:1802–1810. doi:10.1890/07-0555.1 PubMedCrossRefGoogle Scholar
  46. Phillips SJ, Dudik M, Schapire RE (2004) A maximum entropy approach to species distribution modeling. In: Proceedings of the 21st international conference on machine learning, Banff, CanadaGoogle Scholar
  47. Rand TA (2003) Herbivore-mediated apparent competition between two salt marsh forbs. Ecology 84:1517–1526. doi:10.1890/0012-9658(2003)084[1517:HACBTS]2.0.CO;2 CrossRefGoogle Scholar
  48. Rand TA, Louda SM (2004) Exotic weed invasion increases the susceptibility of native plants to attack by a biocontrol herbivore. Ecology 85:1548–1554. doi:10.1890/03-3067 CrossRefGoogle Scholar
  49. Ricciardi A (2001) Facilitative interactions among aquatic invaders: is an “invasional meltdown” occurring in the Great Lakes? Can J Fish Aquat Sci 58:2513–2525. doi:10.1139/cjfas-58-12-2513 CrossRefGoogle Scholar
  50. Richardson DM, Pysek P, Rejmanek M, Barbour MG, Panetta FD, West CJ (2000) Naturalization and invasion of alien plants: concepts and definitions. Divers Distrib 6:93–107. doi:10.1046/j.1472-4642.2000.00083.x CrossRefGoogle Scholar
  51. Russell FL, Louda SM (2005) Indirect interaction between two native thistles mediated by an invasive exotic floral herbivore. Oecologia 146:373–384. doi:10.1007/s00442-005-0204-3 PubMedCrossRefGoogle Scholar
  52. Russell FL, Louda SM, Rand TA, Kachman SD (2007) Variation in herbivore-mediated indirect effects of an invasive plant on a native plant. Ecology 88:413–423. doi:10.1890/0012-9658(2007)88[413:VIHIEO]2.0.CO;2 PubMedCrossRefGoogle Scholar
  53. Schmitt RJ (1987) Indirect interactions between prey: apparent competition, predator aggregation, and habitat segregation. Ecology 68:1887–1897. doi:10.2307/1939880 CrossRefGoogle Scholar
  54. Sheppard AW, van Klinken RD, Heard TA (2005) Scientific advances in the analysis of direct risks of weed biological control agents to nontarget plants. Biol Control 35:215–226. doi:10.1016/j.biocontrol.2005.05.010 CrossRefGoogle Scholar
  55. Sieg CH (1993) Stethobaris commixta Blatchley (Coleoptera: Curculionideae) collected from a species of orchid, Platanthera praeclara Sheviak and Bowles in North Dakota tall-grass prairie. Prairie Nat 25:81Google Scholar
  56. Simberloff D (2009) The role of propagule pressure in biological invasions. Annu Rev Ecol Evol Syst 40:81–102. doi:10.1146/annurev.ecolsys.110308.120304 CrossRefGoogle Scholar
  57. Simberloff D, Von Hollen B (1999) Positive interactions of nonindigenous species: invasional meltdown? Biol Invasions 1:21–32. doi:10.1023/A:1010086329619 CrossRefGoogle Scholar
  58. Smithson A (2002) The consequences of rewardlessness in orchids: reward-supplementation experiments with Anacamptis morio (Orchidaceae). Am J Bot 89:1579–1587. doi:10.3732/ajb.89.10.1579 PubMedCrossRefGoogle Scholar
  59. Smithson A (2005) Pollinator limitation and inbreeding depression in orchid species with and without nectar rewards. New Phytol 169:419–430. doi:10.1111/j.1469-8137.2005.01592.x CrossRefGoogle Scholar
  60. St. Hilaire L (2002) Amerorchis rotundifolia (Banks ex Pursh) Hultén, small round-leaved Orchis. Conservation and Research Plan for New England. New England Conservation Program, Framingham, MA, p 48Google Scholar
  61. Strauss SY (1991) Indirect effects in community ecology: their definition study and importance. Trends Ecol Evol 6:206–210. doi:10.1016/0169-5347(91)90023-Q PubMedCrossRefGoogle Scholar
  62. Strauss SY, Irwin RE (2004) Ecological and evolutionary consequences of multispecies plant-animal interactions. Annu Rev Ecol Evol Syst 35:435–466. doi:10.1146/annurev.ecolsys.35.112202.130215 CrossRefGoogle Scholar
  63. Strauss SY, Irwin RE, Lambrix VM (2004) Optimal defence theory and flower petal colour predict variation in the secondary chemistry of wild radish. J Ecol 92:132–141. doi:10.1111/j.1365-2745.2004.00843.x CrossRefGoogle Scholar
  64. Tremblay RL, Ackerman JD, Zimmerman JK, Calvo RN (2005) Variation in sexual reproduction in orchids and its evolutionary consequences: a spasmodic journey to diversification. Biol J Linn Soc 84:1–54. doi:10.1111/j.1095-8312.2004.00400.x CrossRefGoogle Scholar
  65. Trethowan PD, Robertson MP, McConnachie AJ (2011) Ecological niche modelling of an invasive alien plant and its potential biological control agents. S Afr J Bot 77:137–146. doi:10.1016/j.sajb.2010.07.007 CrossRefGoogle Scholar
  66. van der Pijl L, Dodson CH (1966) Orchid flowers: their pollination and evolution. University of Miami Press, Coral Gables, FLGoogle Scholar
  67. White EM, Wilson JC, Clarke AR (2006) Biotic indirect effects: a neglected concept in invasion biology. Divers Distrib 12:443–455. doi:10.1111/j.1366-9516.2006.00265.x CrossRefGoogle Scholar
  68. Wiggins GJ, Grant JF, Lambdin PL, Ranney JW, Wilkerson JB, VanManen FT (2010) Spatial prediction of habitat overlap of introduced and native thistles to identify potential areas of nontarget activity of biological control agents. Environ Entomol 39:1866–1877. doi:10.1603/EN10112 PubMedCrossRefGoogle Scholar
  69. Wolcott GN (1948) The insects of Puerto Rico. Coleoptera. J Agric Univ Puerto Rico 32:225–416Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Wilnelia Recart
    • 1
  • James D. Ackerman
    • 1
  • Ana A. Cuevas
    • 1
  1. 1.Department of Biology and Center for Applied Tropical Ecology and Conservation, Faculty of Natural SciencesUniversity of Puerto RicoSan JuanUSA

Personalised recommendations