Advertisement

Biological Invasions

, Volume 15, Issue 1, pp 89–100 | Cite as

Pre-adaptive shift of a native predator (Araneae, Zodariidae) to an abundant invasive ant species (Hymenoptera, Formicidae)

  • César Monzó
  • María Juan-Blasco
  • Stano Pekár
  • Óscar Mollá
  • Pedro Castañera
  • Alberto Urbaneja
Original Paper

Abstract

Invasive species often displace native species and can affect ecological processes in invaded habitats. If invasive species become abundant, changes in prey availability may be particularly harmful to specialist predators. The Argentine ant, Linepithema humile Mayr, is an important invasive species on nearly all continents. Spiders of the genus Zodarion are specialised ant-eating predators native to the Mediterranean yet it is unknown if they can exploit invasive ant species. Here we studied spatial and temporal abundance of this invasive ant and the native spider, Zodarion cesari Pekár, during 4 years in four citrus groves. Circadian activity of both spiders and ants, and capture efficiency and prey specificity of the predator were also evaluated. The abundance of Z. cesari was strongly correlated to L. humile abundance. The predatory activity of spiders varied seasonally with differences on the relative frequency of spiders capturing ants depending on the time of the year. In laboratory, Z. cesari displayed most efficient capture upon the native ant Tapinoma nigerrimum (Nylander) and the invasive ant L. humile in comparison with five other native ant species. These results demonstrate that the native spider Z. cesari is successfully exploiting the invasive ant species L. humile and is likely a locally monophagous predator. We suggest that Z. cesari shifted away from native T. nigerrimum post invasion as both ant species are phylogenetically related and of similar size.

Keywords

Linepithema humile Specialist predator Zodarion Prey specialisation Community ecology 

Notes

Acknowledgments

We thank Aureli Marco and Martí Llavador for the management of the citrus orchards, and Helga Montón, Pilar Vanaclocha and David Tortosa (IVIA) for technical assistance. Kiko Gómez for his help on the taxonomic identification of the ant species and Dr. Alejandro Tena (IVIA) for comments about this work.

Supplementary material

Video S1. Video footage showing Zodarion cesari attacking an Argentine ant, Linepithema humile in the field (Quicktime format). (MPG 850 kb)

Video S2. Video footage showing Zodarion cesari attacking an Argentine ant, Linepithema humile in the laboratory (Quicktime format). (MPG 1544 kb)

References

  1. Arnan X, Cerdá X, Retana J (2012) Distinctive life traits and distribution along environmental gradients of dominant and subordinate Mediterranean ant species. Oecologia. doi: 10.1007/s00442-012-2315-y
  2. Bartlett BR (1961) The influence of ants upon parasites, predators and scale insects. Ann Entomol Soc Am 54:543–551Google Scholar
  3. Blancafort X, Gomez C (2005) Consequences of the Argentine ant, Linepithema humile (Mayr), invasion on pollination of Euphorbia characias (L.) (Euphorbiaceae). Acta Oecol 28:49–55CrossRefGoogle Scholar
  4. Blight O, Renucci M, Tirard A, Orgeas J, Provost E (2010) A new colony structure of the invasive Argentine ant (Linepithema humile) in Southern Europe. Biol Invasions 12:1491–1497CrossRefGoogle Scholar
  5. Buczkowski G, Bennett GW (2008) Aggressive interactions between the introduced Argentine ant, Linepithema humile and the native odorous house ant, Tapinoma sessile. Biol Invasions 10:1001–1011CrossRefGoogle Scholar
  6. Cerdá X, Retana J, Manzaneda A (1998) The role of competition by dominants and temperature in the foraging of subordinate species in Mediterranean ant communities. Oecologia 117:404–412CrossRefGoogle Scholar
  7. Cerdá X, Palacios R, Retana J (2009) Ant community structure in citrus orchards in the Mediterranean Basin: impoverishment as a consequence of habitat homogeneity. Environ Entomol 38:317–324PubMedCrossRefGoogle Scholar
  8. Daane KM, Cooper ML, Sime KR, Nelson EH, Battany MC, Rust MK (2008) Testing baits to control Argentine ants (Hymenoptera: Formicidae) in vineyards. J Econ Entomol 101:699–709PubMedCrossRefGoogle Scholar
  9. Foelix RF (1996) Biology of spiders. Oxford University Press, New YorkGoogle Scholar
  10. Giraud T, Pedersen JS, Keller L (2002) Evolution of supercolonies: the Argentine ants of Southern Europe. Proc Natl Acad Sci USA 99:6075–6079PubMedCrossRefGoogle Scholar
  11. Glenn S, Holway D (2008) Consumption of introduced prey by native predators: Argentine ants and pit-building ant lions. Biol Invasions 10:273–280CrossRefGoogle Scholar
  12. Halaj J, Ross DW, Moldenke AR (1997) Negative effects of ant foraging on spiders in Douglas-fir canopies. Oecologia 109:313–322CrossRefGoogle Scholar
  13. Harkness RD (1976) The relation between an ant, Cataglyphis bicolor (F.) (Hymenoptera: Formicidae) and a spider, Zodarium frenatum (Simon) (Araneae: Zodariidae). Entomol Mon Mag 111:141–146Google Scholar
  14. Hölldobler B, Wilson EO (1990) The ants. Belknap Press of Harvard University Press, Cambridge, MAGoogle Scholar
  15. Holway DA (1998) Effect of Argentine ant invasions on ground dwelling arthropods in northern California riparian woodlands. Oecologia 116:252–258CrossRefGoogle Scholar
  16. Holway DA (1999) Competitive mechanisms underlying the displacement of native ants by the invasive Argentine ant. Ecology 80:238–251CrossRefGoogle Scholar
  17. Holway DA, Lach L, Suarez AV, Tsutsui ND, Case TJ (2002) The causes and consequences of ant invasions. Annu Rev Ecol Syst 33:181–233CrossRefGoogle Scholar
  18. Human KG, Gordon DM (1996) Exploitation and interference competition between the invasive Argentine ant, Linepithema humile, and native ant species. Oecologia 105:405–412CrossRefGoogle Scholar
  19. King RB, Ray JM, Stanford KM (2006) Gorging on gobies: beneficial effects of alien prey on a threatened vertebrate. Can J Zool 84:108–115CrossRefGoogle Scholar
  20. Lanch L (2008) Argentine ants displace floral arthropods in a biodiversity hotspot. Divers Distrib 14:281–290Google Scholar
  21. Lenoir L, Bengtson J, Persson T (2003) Effects of Formica ants on the soil fauna—results from a short-term exclusion and a long-term natural experiment. Oecologia 143:423–430Google Scholar
  22. López F, Serrano JM, Acosta FJ (1992) Temperature-vegetation structure interaction: the effect on the activity of the ant Messor barbarus (L.). Plant Ecol 99(100):119–128CrossRefGoogle Scholar
  23. Ludwig JA, Reynolds JF (1988) Statistical ecology. A primer on methods and computing. Wiley, New YorkGoogle Scholar
  24. Maerz JC, Karuzas JM, Madison DM, Blossey B (2005) Introduced invertebrates are important prey for a generalist predator. Divers Distrib 11:83–90CrossRefGoogle Scholar
  25. Moller H (1996) Lessons for invasion theory from social insects. Biol Cons 78:125–142CrossRefGoogle Scholar
  26. Mooney HA, Cleland EE (2001) The evolutionary impact of invasive species. Proc Natl Acad Sci USA 98:5446–5451PubMedCrossRefGoogle Scholar
  27. Moreno DS, Haney PB, Luck RF (1987) Chlorpyrifos and diazinon as barriers to Argentine ant (Hymenoptera: Formicidae) foraging on citrus trees. J Econ Entomol 80:208–214Google Scholar
  28. Pedersen JS, Krieger MJB, Vogel V, Giraud T, Keller L (2006) Native supercolonies of unrelated individuals in the invasive Argentine ant. Evolution 60:782–791PubMedGoogle Scholar
  29. Pekár S (2004) Predatory behavior of two European ant-eating spiders (Araneae: Zodariidae). J Arachnol 32:31–41CrossRefGoogle Scholar
  30. Pekár S (2005) Predatory characteristics of ant-eating Zodarion spiders (Araneae: Zodariidae): potential biological control agents. Biol Control 34:196–203CrossRefGoogle Scholar
  31. Pekár S, Brabec M (2009) Modern analysis of biological data. 1. Generalised linear models in R. Scientia, Praha [in Czech]Google Scholar
  32. Pekár S, Král J (2001) A comparative study of the biology and karyotypes of two central European zodariid spiders (Araneae, Zodariidae). J Arachnol 29:345–353CrossRefGoogle Scholar
  33. Pekár S, Lubin Y (2003) Habitats and interspecific associations of zodariid spiders in the Negev (Araneae: Zodariidae). Israel J Zool 49:255–267CrossRefGoogle Scholar
  34. Pekár S, Toft S (2009) Can ant-eating Zodarion spiders (Araneae: Zodariidae) develop on a diet optimal for euryphagous arthropods predators? Physiol Entomol 34:195–201CrossRefGoogle Scholar
  35. Pekár S, Král J, Lubin J (2005) Natural history and karyotype of some ant-eating zodariid spiders (Araneae, Zodariidae) from Israel. J Arachnol 33:50–62CrossRefGoogle Scholar
  36. Pekár S, Toft S, Hrušková M, Mayntz D (2008) Dietary and prey-capture adaptations by which Zodarion germanicum, an ant-eating spider (Araneae: Zodariidae), specialises on the Formicinae. Naturwissenschaften 95:233–239PubMedCrossRefGoogle Scholar
  37. Pekár S, Cardoso P, Barriga JC, Carvalho JC (2011) Update to the zodariid spider fauna of the Iberian Peninsula and Madeira (Araneae: Zodariidae). Zootaxa 2814:19–32Google Scholar
  38. Pekas A, Tena A, Aguilar A, García-Marí F (2011) Spatio-temporal patterns and interactions with honeydew-producing hemiptera of ants in a Mediterranean citrus orchard. Agr Forest Entomol 13:89–97CrossRefGoogle Scholar
  39. Perrings C, Folke C, Maler KG (1992) The ecology and economics of biodiversity loss: the research agenda. Ambio 21:201–211Google Scholar
  40. Piñol J, Espadaler X, Cañellas N (2012) Eight years of ant-exclusion from citrus canopies: effects on the arthropod assemblage and on fruit yield. Agr Forest Entomol 14:49–57CrossRefGoogle Scholar
  41. R Development Core Team (2009) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. Available via http://www.R-project.org
  42. Sanders D, Platner C (2007) Intraguild interactions between spiders and ants and top-down control in a grassland food web. Oecologia 150:611–624PubMedCrossRefGoogle Scholar
  43. Sanders NJ, Gotelli NJ, Heller NE, Gordon DM (2003) Community disassembly by an invasive species. Proc Natl Acad Sci USA 100:2474–2477PubMedCrossRefGoogle Scholar
  44. Schuch S, Platner C, Sanders D (2008) Potential positive effect of the ant species Lasius niger on linyphiid spiders. J Appl Entomol 132:375–381CrossRefGoogle Scholar
  45. Shattuck SO (1992) Generic revision of the ant subfamily Dolichoderinae (Hymenopetra: Formicidae). Sociobiology 21:1–181Google Scholar
  46. Strauss SY, Lau JA, Carroll SP (2006) Evolutionary responses of natives to introduced species: what do introductions tell us about natural communities? Ecol Lett 9:357–374PubMedCrossRefGoogle Scholar
  47. Suarez AV, Hollway DA, Case TJ (2001) Patterns of spread in biological invasions dominated by long-distance jump dispersal: insights from Argentine ants. Proc Natl Acad Sci USA 98:1095–1100PubMedCrossRefGoogle Scholar
  48. Ter Braak CJF, Šmilauer P (2002) CANOCO reference manual and CanoDraw for windows user’s guide. Software for Canonical Community Ordination (version 4.5). Wageningen and České Budějovice, BiometricsGoogle Scholar
  49. Touyama Y, Ihara Y, Ito F (2008) Argentine ant infestation affects the abundance of the native myrmecophagic jumping spider Siler cupreus Simon in Japan. Insect Soc 55:144–146CrossRefGoogle Scholar
  50. Urbaneja A, García Marí F, Tortosa D, Navarro C, Vanaclocha P, Bargues L, Castañera P (2006) Influence of ground predators on the survival of the Mediterranean fruit fly pupae, Ceratitis capitata, in Spanish citrus orchards. Biocontrol 51:611–626CrossRefGoogle Scholar
  51. Vanaclocha P, Monzó C, Gómez K, Tortosa D, Pina T, Castañera P, Urbaneja A (2005) Hormigas (Hymenoptera: Formicidae) presentes en el suelo de los cítricos de la provincia de Valencia. Phytoma España 171:14–22Google Scholar
  52. Vega SJ, Rust MK (2001) Argentine ant: a significant invasive species in agricultural, urban and natural environments. Sociobiology 37:3–25Google Scholar
  53. Wittenberg R, Cock MJW (2001) Invasive alien species: a toolkit of best prevention and management practices. CAB International, Wallingford, OxonCrossRefGoogle Scholar
  54. Wong TTY, McInnis DO, Nishimoto JI, Ota AK, Chang VCS (1984) Predation of the Mediterranean fruit fly (Diptera: Tephritidae) by the Argentine ant (Hymenoptera: Formicidae) in Hawaii. J Econ Entomol 77:1454–1458Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • César Monzó
    • 1
    • 3
  • María Juan-Blasco
    • 1
  • Stano Pekár
    • 2
  • Óscar Mollá
    • 1
  • Pedro Castañera
    • 3
  • Alberto Urbaneja
    • 1
  1. 1.Unidad Asociada de Entomología IVIA-CIB CSIC, Centro de Protección Vegetal y BiotecnologíaInstituto Valenciano de Investigaciones Agrarias (IVIA)Moncada, ValenciaSpain
  2. 2.Department of Botany and Zoology, Faculty of ScienceMasaryk UniversityBrnoCzech Republic
  3. 3.Departamento de Biología de Plantas, Centro de Investigaciones Biológicas (CIB)del Consejo Superior de Investigaciones Científicas (CSIC)MadridSpain

Personalised recommendations