Biological Invasions

, Volume 14, Issue 11, pp 2217–2227 | Cite as

Australian acacias: weeds or useful trees?

Perpectives and Paradigms


By promoting Australian acacias to the developing world, aid and development agencies are failing to learn from the mistakes made with mesquite (Prosopis juliflora) and jatropha (Jatropha curcas)—two plants with weedy attributes that have done more harm than good when promoted in Africa as aid. The belief in “miracle” plants that can lift people quickly out of poverty is problematical, because such plants have the attributes of weeds—vigorous growth in degraded conditions—and often escape human control, degrading rather than improving land. Other problems are costs that are less obvious than benefits, discounting of the future, and a belief that anything green is good. The main biological problem with Australian acacias is copious crops of long-lived seeds which make eradication very difficult, binding future generations to acacia-dominated landscapes. Drawing on papers presented at a workshop on Australian acacias as introduced species around the world held at Stellenbosch University, I examine the different perceptions of Australian acacias by invasion biologists and the aid and development community. The latter has redefined “sustainability” to give it social rather than ecological goals. To manage Australian acacias sustainably, precautionary risk assessment should take precedence over adaptive management, because mistakes are often irreversible and can take many decades to become obvious.


Sustainable development Sustainability Aid and development Acacia Mesquite Prosopis Alien plant Weed Agroforestry Woodlots Conflict of interest 



The Oppenheimer Memorial Trust and Stellenbosch University are thanked for financial support to attend the workshop in Stellenbosch run by the DST-NRF Centre of Excellence for Invasion Biology. Dave Richardson of Stellenbosch University and two anonymous referees provided helpful comments on the manuscript. Arne Witt of CABI Africa provided useful information.


  1. Agrawal A, Gibson CC (1999) Enchantment and disenchantment: the role of community in natural resource conservation. World Dev 27(4):629–649CrossRefGoogle Scholar
  2. Albrecht A, Kandji ST (2003) Carbon sequestration in tropical agroforestry systems. Agric Ecosyst Environ 99(1–3):15–27. doi: 10.1016/s0167-8809(03)00138-5 CrossRefGoogle Scholar
  3. Al-shurai A, Labrada R (2006) Problems posed by Mesquite in Yemen. In: FAO (ed) Problems posed by the introduction of Prosopis spp. in selected countries. Food and Agriculture Organization of the United Nations, RomeGoogle Scholar
  4. American Psychological Association Task Force (2011) Psychology & global climate change. Am Psychol AssocGoogle Scholar
  5. Arnold JEM, Kohlin G, Persson R (2006) Woodfuels, livelihoods, and policy interventions: changing perspectives. World Dev 34(3):596–611. doi: 10.1016/j.worlddev.2005.08.008 CrossRefGoogle Scholar
  6. Atkinson G, Mourato S (2008) Environmental cost–benefit analysis. Annu Rev Environ Resour 33:317–344. doi: 10.1146/annurev.environ.33.020107.112927 CrossRefGoogle Scholar
  7. Barney J, DiTomaso J (2008) Non-native species and bioenergy: are we cultivating the next invader? Bioscience 58:64–70CrossRefGoogle Scholar
  8. Bayala J, Kalinganire A, Tchoundjeu Z, Sinclair F, Garrity D (2011) Conservation agriculture with trees in the West African Sahel—a review. ICRAF Occasional Paper 14. World Agroforestry Centre, NairobiGoogle Scholar
  9. Bazerman MH (2006) Climate change as a predictable surprise. Clim Change 77(1–2):179–193. doi: 10.1007/s10584-006-9058-x CrossRefGoogle Scholar
  10. Berkes F, Colding J, Folke C (2000) Rediscovery of traditional ecological knowledge as adaptive management. Ecol Appl 10(5):1251–1262CrossRefGoogle Scholar
  11. Birega G, Maina A, Anderson T (2010) Biofuels—a failure for Africa. African Biodiversity Network, Ethiopian Society for Consumer Protection, The Gaia FoundationGoogle Scholar
  12. Bokrezion H (2008) The ecological and socio-economic role of Prosopis juliflora in Eritrea: an analytical assessment within the context of rural development in the horn of Africa. Johannes Gutenberg University, MainzGoogle Scholar
  13. Bright C (1998) Life out of bounds. W.W. Norton & Company, New York, NYGoogle Scholar
  14. Carruthers J, Robin L, Hattingh J, Kull C, Rangan H, van Wilgen BW (2011) A native at home and abroad: the history, politics, ethics and aesthetics of Acacia. Divers Distrib 17:810–821. doi: 10.1111/j.1472-4642.2011.00779.x CrossRefGoogle Scholar
  15. Castro-Díez P, Godoy O, Saldaña A, Richardson DM (2011) Predicting invasiveness of Australian Acacia species on the basis of their native climatic affinities, life-history traits and human use. Divers Distrib 17:934–945CrossRefGoogle Scholar
  16. Cossalter C (1986) Introduction of Australian acacias into dry tropical West Africa. Forest Ecol Manag 16:367–389CrossRefGoogle Scholar
  17. Cunningham PJ, Abasse T (2005) Domestication of Australian Acacias for the Sahelian zone of West Africa. In: Kalinganire A, Niang A, Kone A (eds) Domestication des especes agroforestieres au Sahel: situation actuelle et perspectives. ICRAF Working Paper, NairobiGoogle Scholar
  18. de Neergaard A, Saarnak C, Hill T, Khanyile M, Berzosa AM, Birch-Thomsen T (2005) Australian wattle species in the Drakensberg region of South Africa—an invasive alien or a natural resource? Agric Syst 85(3):216–233. doi: 10.1016/j.agsy.2005.06.009 CrossRefGoogle Scholar
  19. de Troyer C (1986) Desertification control in the Sudanian and Sahelian zones of West Africa—better management of the renewable resource base. Forest Ecol Manag 16:233–241CrossRefGoogle Scholar
  20. Degen AA, Blanke A, Becker K, Kam M, Benjamin RW, Makkar HPS (1997) The nutritive value of Acacia saligna and Acacia salicina for goats and sheep. Anim Sci 64:253–259CrossRefGoogle Scholar
  21. Degen AA, Mishorr T, Makkar HPS, Kam M, Benjamin RW, Becker K, Schwartz HJ (1998) Effect of Acacia saligna with and without administration of polyethylene glycol on dietary intake in desert sheep. Anim Sci 67:491–498CrossRefGoogle Scholar
  22. Endelevu Energy (2009) Jatropha reality check: a field assessment of the agronomic and economic viability of Jatropha and other oilseed crops in Kenya. GTZ—Regional Energy Advisory Platform (East Africa), NairobiGoogle Scholar
  23. FAO (2006) Problems posed by the introduction of Prosopis spp. in selected countries. Food and Agriculture Organization of the United Nations, RomeGoogle Scholar
  24. Fuentes M (2008) Biological conservation and global poverty. Biotropica 40(2):139–140. doi: 10.1111/J.1744-7429.2007.00396.x CrossRefGoogle Scholar
  25. Gibson M, Richardson DM, Marchante E, Marchante H, Rodger JG, Stone GN, Byrne M, Fuentes-Ramírez A, George N, Harris C, Johnson SD, Le Roux JJ, Miller JT, Murphy DJ, Pauw A, Prescott MN, Wandrag EM, Wilson JRU (2011) Reproductive biology of Australian acacias: important mediator of invasiveness? Divers Distrib 17:911–933CrossRefGoogle Scholar
  26. Griffin AR, Midgley S, Bush D, Cunningham P, Rinaudo T (2011) Global uses of Australian acacias—recent trends and future prospects. Divers Distrib 17:837–847CrossRefGoogle Scholar
  27. Groves RH (1998) Recent incursions of weeds to Australia 1971–1995. CRC for Weed Management Systems, AdelaideGoogle Scholar
  28. Gutiérrez AT, Reaser JK (2005a) Linkages between development assistance and invasive alien species in freshwater systems in Southeast Asia. USAID Asia and Near East Bureau, Washington, DCGoogle Scholar
  29. Gutiérrez AT, Reaser JK (2005b) Linkages between development assistance and invasive alien species in freshwater systems of Southeast Asia. USAID Asia and Near East Bureau, Washington, DCGoogle Scholar
  30. International Center for Underutilized Crops (2008) International Symposium “Underutilized plants for food, nutrition, income and sustainable development”.
  31. Jama B, Zeila A (2005) Agroforestry in the drylands of eastern Africa: a call to action. ICRAF Working Paper 1. World Agroforestry Centre, NairobiGoogle Scholar
  32. Kull CA, Shackleton CM, Cunningham PS, Ducatillon C, Dufour-Dror J-M, Esler KJ, Friday JB, Gouveia AC, Griffin AR, Marchante EM, Midgley SJ, Pauchard A, Rangan H, Richardson DM, Rinaudo T, Tassin J, Urgenson LS, von Maltitz GP, Zenni RD, Zylstra MJ (2011) Adoption, use, and perception of Australian acacias around the world. Divers Distrib 17:822–836CrossRefGoogle Scholar
  33. Le Maitre DC, Richardson DM, Chapman RA (2004) Alien plant invasions in South Africa: driving forces and the human dimension. S Afr J Sci 100(1):103–112Google Scholar
  34. Le Maitre DC, Gaertner M, Marchante E, Ens E-J, Holmes PM, Pauchard A, O’Farrell PJ, Rogers AM, Blanchard R, Blignaut J, Richardson DM (2011) Impacts of invasive Australian acacias: implications for management and restoration. Divers Distrib 17:1015–1029CrossRefGoogle Scholar
  35. Le Roux JJ, Brown G, Byrne M, Ndlovu J, Richardson DM, Suda J, Thompson G, Trávníček P, Wilson JRU (2011) Phylogeographic and cytogenetic consequences of different introduction histories of invasive Australian Acacia and Paraserianthes species (Fabaceae) in South Africa. Divers Distrib 17:861–871. doi: 10.1111/j.1472-4642.2011.00784.x CrossRefGoogle Scholar
  36. Lele SM (1991) Sustainable development—a critical review. World Dev 19(6):607–621CrossRefGoogle Scholar
  37. Lonsdale WM (1994) Inviting trouble: introduced pasture species in Northern Australia. Aust J Ecol 19:345–354CrossRefGoogle Scholar
  38. Lonsdale WM, FitzGibbon F (2011) The known unknowns—managing the invasion risk from biofuels. Curr Opin Environ Sustain 3:1–5CrossRefGoogle Scholar
  39. Low T (1999) Feral future: the untold story of Australia’s exotic invaders. Penguin, MelbourneGoogle Scholar
  40. Low T (2005) Strangely familiar: Australia’s Borneo Connection. Wildl Aust 43(3):10–15Google Scholar
  41. Low T, Booth C, Sheppard A (2011) Weedy biofuels: what can be done? Curr Opin Environ Sustain 3:1–5CrossRefGoogle Scholar
  42. Lowe S, Browne M, Boudjelas S, De Poorter M (2000) 100 of the World’s worst invasive alien species: a selection from the global invasive species database. The Invasive Species Specialist Group, World Conservation UnionGoogle Scholar
  43. Mack RN, Erneberg M (2002) The United States naturalized flora: largely the product of deliberate introductions. Ann Mo Bot Gard 89(2):176–189CrossRefGoogle Scholar
  44. Maundu P, Kibet S, Morimoto Y, Imbumi M, Adeka R (2009) Impact of Prosopis juliflora on Kenya’s semi-arid and arid ecosystems and local livelihoods. Biodivers 10(2&3):33–50Google Scholar
  45. Midgley SJ, Turnbull JW (2003) Domestication and use of Australian acacias: case studies of five important species. Aust Syst Bot 16:89–102CrossRefGoogle Scholar
  46. Miller JT, Murphy DJ, Brown GK, Richardson DM, González-Orozco CE (2011) The evolution and phylogenetic placement of invasive Acacia species. Divers Distrib 17:848–860. doi: 10.1111/j.1472-4642.2011.00780.x CrossRefGoogle Scholar
  47. Milton SJ (2004) Grasses as invasive alien plants in South Africa. S Afr J Sci 100:69–75Google Scholar
  48. Milton SJ, Dean WRJ (2010) Plant invasions in arid areas: special problems and solutions: a South African perspective. Biol Invasions 12:3935–3948CrossRefGoogle Scholar
  49. Mog JM (2004) Struggling with sustainability—a comparative framework for evaluating sustainable development programs. World Dev 32(12):2139–2160. doi: 10.1016/j.worlddev.2004.07.002 CrossRefGoogle Scholar
  50. Mwangi E, Swallow B (2005) Invasion of Prosopis juliflora and local livelihoods: case study from the Lake Baringo area of Kenya. ICRAF Working Paper 3. World Agroforestry Centre, NairobiGoogle Scholar
  51. Raghu S, Anderson RC, Daehler CC, Davis AS, Wiedenmann RN, Simberloff D, Mack RN (2006) Adding biofuels to the invasive species fire? Science 313:1742PubMedCrossRefGoogle Scholar
  52. Randall R (2002) A global compendium of weeds. R.G. & F.J Richardson, MelbourneGoogle Scholar
  53. Reichard S, White P (2001) Horticulture as a pathway of invasive plant introductions in the United States. Bioscience 51(2):103–113CrossRefGoogle Scholar
  54. Rejmánek M, Richardson DM (2011) Eucalypts. In: Simberloff D, Rejmánek M (eds) Encyclopedia of biological invasions. University of California, Berkeley, pp 203–209Google Scholar
  55. Renner R (2007) Green gold in a shrub: entrepreneurs target the jatropha plant as the next big biofuel. Sci Am 296:20–23PubMedCrossRefGoogle Scholar
  56. Richardson DM (2011) Forestry and agroforestry. In: Simberloff D, Rejmánek M (eds) Encyclopedia of biological invasions. University of California Press, Berkeley, pp 241–248Google Scholar
  57. Richardson DM, Blanchard R (2010) Learning from our mistakes: minimising problems with invasive biofuel plants. Curr Opin Environ Sustain 3:1–7Google Scholar
  58. Richardson DM, Kluge RL (2008) Seed banks of invasive Australian Acacia species in South Africa: role in invasiveness and options for management. Perspect Plant Ecol Evol Syst 10(3):161–177. doi: 10.1016/j.ppees.2008.03.001 CrossRefGoogle Scholar
  59. Richardson DM, Rejmánek M (2011) Trees and shrubs as invasive alien species—a global review. Divers Distrib 17:788–809. doi: 10.1111/j.1472-4642.2011.00782.x CrossRefGoogle Scholar
  60. Richardson DM, Carruthers J, Hui C, Impson FAC, Robertson MP, Rouget M, Le Roux JJ, Wilson JRU (2011) Human-mediated introductions of Australian acacias—a global experiment in biogeography. Divers Distrib 17:771–787CrossRefGoogle Scholar
  61. Rodríguez-Echeverría S, Le Roux JJ, Crisóstomo JA, Ndlovu J (2011) Jack-of-all-trades and master of many? How does associated rhizobial diversity influence the colonization success of Australian Acacia species? Divers Distrib 17:946–957. doi: 10.1111/j.1472-4642.2011.00787.x CrossRefGoogle Scholar
  62. Sanderson S (2005) Poverty and conservation: the new century’s “Peasant question?”. World Dev 33(2):323–332. doi: 10.1016/j.worlddev.2004.07.016 CrossRefGoogle Scholar
  63. Van Wilgen BW, Dyer C, Hoffmann JH, Ivey P, Le Maitre DC, Richardson DM, Rouget M, Wannenburgh A, Wilson JRU (2011) A strategic approach to the integrated management of Australian acacias in South Africa. Divers Distrib 11:1060–1075. doi: 10.1111/j.1472-4642.2011.00785.x CrossRefGoogle Scholar
  64. Williams C, Biswas T (2010) Commercial potential of giant reed for pulp, paper and biofuel production. Rural Industries Research and Development Corporation, CanberraGoogle Scholar
  65. Wilson JRU, Gairifo C, Gibson MR, Arianoutsou M, Bakar BB, Baret S, Celesti-Grapow L, DiTomaso JM, Dufour-Dror J-M, Kueffer C, Kull CA, Hoffmann JH, Impson FAC, Loope LL, Marchante E, Marchante H, Moore JL, Murphy DJ, Tassin J, Witt A, Zenni RD, Richardson DM (2011) Risk assessment, eradication, and biological control: global efforts to limit Australian acacia invasions. Divers Distrib 17:1030–1046CrossRefGoogle Scholar
  66. Witt ABR (2011) Biofuels and invasive species from an African perspective—a review. Glob Change Biol Bioenergy 2(6):321–329. doi: 10.1111/j.1757-1707.2010.01063.x CrossRefGoogle Scholar
  67. World Commission on Environment and Development (1987) Our Common Future. Oxford University Press, New YorkGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Invasive Species CouncilMelbourneAustralia

Personalised recommendations