Advertisement

Biological Invasions

, Volume 14, Issue 11, pp 2369–2378 | Cite as

Invasive Africanized honeybees change the structure of native pollination networks in Brazil

  • Gilberto M. de M. Santos
  • Cândida M. L. Aguiar
  • Julieta Genini
  • Celso F. Martins
  • Fernando C. V. Zanella
  • Marco A. R. MelloEmail author
Original Paper

Abstract

The Africanized honeybee Apis mellifera (AHB) is an invasive species spread over all Brazilian biomes, which has negative impacts on native bee populations, but whose impacts on native plants are still controversial. In order to understand how its impacts extend to the pollination service at the community level, we studied the AHB and its interactions in a multi-species context using network theory. We analyzed six pollination networks from the Brazilian Caatinga, a xeric biome where beekeeping is increasing very quickly. The AHB occupied a central position in all networks, as it was responsible for a large share of the interactions observed (14 ± 7 %) and bound together different modules. By simulating the removal of the AHB from each network, we observed no effects on connectance, but a strong decrease in nestedness (−23 ± 19 %) and an increase in modularity (8 ± 5 %). The robustness of networks to cumulative random extinctions was on average not affected. In summary, our evidence points out that the AHB induces significant changes in the structure of native pollination networks, mainly by making them more cohesive and monopolizing many interactions. Although the AHB did not affect network robustness, its net impact on the pollination service may be negative, because this invasive species is very generalistic and may not be an efficient pollinator for some native plants.

Keywords

Apis mellifera Complex networks Ecosystem services Centrality Modularity Nestedness Pollination 

Notes

Acknowledgments

D. Vázquez and P. R. Guimarães Jr. made invaluable suggestions for the manuscript. C. Dormann, F. M. D. Marquitti, M. Almeida-Neto, N. Blüthgen, P. R. Guimarães Jr. and R. Guimerà helped us use their network software. F. França, E. Melo and M. R. V. Barbosa identified plant species. J. Ollerton helped us with literature on the impacts of invasive honeybees. This work was funded with grants from the Brazilian Research Council (CNPq) and the Research Foundation of Bahia (FAPESB). GMMS (309711/2009-6), F.C.V.Z. (501850/2009-0) and CFM (307687/2008-2) received research productivity fellowships from CNPq. MARM received a postdoctoral fellowship from the Alexander von Humboldt Foundation (1134644).

Supplementary material

10530_2012_235_MOESM1_ESM.pdf (101 kb)
The original data matrices of the studied networks are available online (Appendix S1) (PDF 100 kb)

References

  1. Aebi A, Neumann P (2011) Endosymbionts and honey bee colony losses? Trends Ecol Evol 26(10):494. doi: 10.1016/j.tree.2011.06.008 PubMedCrossRefGoogle Scholar
  2. Aebi A, Vaissière BE, vanEngelsdorp D, Delaplane KS, Roubik DW, Neumann P (2012) Back to the future: Apis versus non-Apis pollination. Trends Ecol Evol 27(3):142–143. doi: 10.1016/j.tree.2011.11.017 CrossRefGoogle Scholar
  3. Aguiar CML (2003) Utilização de recursos florais por abelhas (Hymenoptera, Apoidea) em uma área de caatinga (Itatim, Bahia, Brasil). Rev Bras Zool 20:457–467CrossRefGoogle Scholar
  4. Aguiar CML, Martins CF, Moura ACA (1995) Recursos florais utilizados por abelhas (Hymenoptera, Apoidea) em área de caatinga (São João do Cariri, Paraíba). Revista Nordestina de Biologia 9:125–131Google Scholar
  5. Aizen MA, Feinsinger P (1994) Habitat fragmentation, native insect pollinators, and feral honey bees in Argentine ‘Chaco Serrano’. Ecol Appl 4(2):378–392. doi: 10.2307/1941941 CrossRefGoogle Scholar
  6. Aizen MA, Morales CL, Morales JM (2008) Invasive mutualists erode native pollination webs. PLoS Biol 6(2):e31. doi: 10.1371/journal.pbio.0060031 PubMedCrossRefGoogle Scholar
  7. Almeida-Neto M, Guimarães PR, Guimarães PR Jr, Loyola RD, Ulrich W (2008) A consistent metric for nestedness analysis in ecological systems: reconciling concept and measurement. Oikos 117(8):1227–1239. doi: 10.1111/j.2008.0030-1299.16644.x CrossRefGoogle Scholar
  8. Andrade-Lima D (1981) The Caatinga dominium. Revista Brasileira de Botânica 4:149–153Google Scholar
  9. Bascompte J, Jordano P (2007) Plant-animal mutualistic networks: the architecture of biodiversity. Annu Rev Ecol Evol Syst 38:567–593. doi: 10.1146/annurev.ecolsys.38.091206.095818 CrossRefGoogle Scholar
  10. Bascompte J, Jordano P, Melian CJ, Olesen JM (2003) The nested assembly of plant-animal mutualistic networks. Proc Nat Acad Sci USA 100(16):9383–9387. doi: 10.1073/pnas.1633576100 PubMedCrossRefGoogle Scholar
  11. Bastolla U, Fortuna MA, Pascual-Garcia A, Ferrera A, Luque B, Bascompte J (2009) The architecture of mutualistic networks minimizes competition and increases biodiversity. Nature 458(7241):U1018–U1091. doi: 10.1038/nature07950 CrossRefGoogle Scholar
  12. Bezerra ELS, Machado ICS, Mello MAR (2009) Pollination networks of oil-flowers: a tiny world within the smallest of all worlds. J Anim Ecol 78:1096–1101. doi: 10.1111/j.1365-2656.2009.01567.x PubMedCrossRefGoogle Scholar
  13. Biesmeijer JC, Slaa EJ (2006) The structure of eusocial bee assemblages in Brazil. Apidologie 37(2):240–258. doi: 10.1051/apido:2006014 CrossRefGoogle Scholar
  14. Biesmeijer JC, Slaa EJ, Castro MS, Viana BF, Kleinert AMP, Imperatriz-Fonseca VL (2005) Connectance of Brazilian social bee: food plant network is influenced by habitat, but not by latitude, altitude or network size. Biota Neotropica 5:online. doi: 10.1590/S1676-06032005000100010
  15. Blondel J (2003) Guilds or functional groups: does it matter? Oikos 100:223–231CrossRefGoogle Scholar
  16. Brown MJF, Paxton RJ (2009) The conservation of bees: a global perspective. Apidologie 40(3):410–416. doi: 10.1051/apido/2009019 CrossRefGoogle Scholar
  17. Burgos E, Ceva H, Perazzo RPJ, Devoto M, Medan D, Zimmermann M, MarÌa Delbue A (2007) Why nestedness in mutualistic networks? J Theor Biol 249(2):307–313. doi: 10.1016/j.jtbi.2007.07.030 PubMedCrossRefGoogle Scholar
  18. Butz-Huryn VN (1997) Ecological impacts of introduced honeybees. Q Rev Biol 72:275–297CrossRefGoogle Scholar
  19. Didham RK, Tylianakis JM, Hutchison MA, Ewers RM, Gemmell NJ (2005) Are invasive species the drivers of ecological change? Trends Ecol Evol 20(9):470–474. doi: 10.1016/j.tree.2005.07.006 PubMedCrossRefGoogle Scholar
  20. Dormann CF, Gruber B, Fründ J (2008) Introducing the bipartite package: analyzing ecological networks. R News 8(2):8–11Google Scholar
  21. Dupont YL, Olesen JM (2009) Ecological modules and roles of species in heathland plant-insect flower visitor networks. J Anim Ecol 78(2):346–353. doi: 10.1111/j.1365-2656.2008.01501.x PubMedCrossRefGoogle Scholar
  22. Dupont YL, Hansen DM, Valido A, Olesen JM (2004) Impact of introduced honey bees on native pollination interactions of the endemic Echium wildpretii (Boraginaceae) on Tenerife, Canary Islands. Biol Conserv 118(3):301–311. doi: 10.1016/j.biocon.2003.09.010 CrossRefGoogle Scholar
  23. Elton C (2001) Animal ecology, reprint edn. The University of Chicago Press, ChicagoGoogle Scholar
  24. Genini J, Morellato LPC, Guimaraes PR, Olesen JM (2010) Cheaters in mutualism networks. Biol Lett. doi: 10.1098/rsbl.2009.1021 PubMedGoogle Scholar
  25. Goulson D (2003a) Effects of introduced bees on native ecosystems. Annu Rev Ecol Evol Syst 34(1):1–26. doi: 10.1146/annurev.ecolsys.34.011802.132355 CrossRefGoogle Scholar
  26. Goulson D (2003b) Effects of introduced bees on native ecosystems. Annu Rev Ecol Evol Syst 34(1):1–26CrossRefGoogle Scholar
  27. Guimarães PR, Guimarães P (2006) Improving the analyses of nestedness for large sets of matrices. Environ Model Softw 21:1512–1513CrossRefGoogle Scholar
  28. Guimerà R, Amaral LAN (2005) Functional cartography of complex metabolic networks. Nature 433:895–900PubMedCrossRefGoogle Scholar
  29. Jordano P (1987) Patterns of mutualistic interactions in pollination and seed dispersal—connectance, dependence asymmetries, and coevolution. Am Nat 129(5):657–677CrossRefGoogle Scholar
  30. Jordano P, Bascompte J, Olesen JM (2003) Invariant properties in coevolutionary networks of plant-animal interactions. Ecol Lett 6(1):69–81CrossRefGoogle Scholar
  31. Lopezaraiza-Mikel ME, Hayes RB, Whalley MR, Memmott J (2007) The impact of an alien plant on a native plant-pollinator network: an experimental approach. Ecol Lett 10(7):539–550. doi: 10.1111/j.1461-0248.2007.01055.x PubMedCrossRefGoogle Scholar
  32. Mello MAR, Marquitti FMD, Guimarães PR Jr, Kalko EKV, Jordano P, Aguiar MAM (2011a) The missing part of seed dispersal networks: structure and robustness of bat-fruit interactions. PLoS One Accepted with revisionGoogle Scholar
  33. Mello MAR, Marquitti FMD, Guimarães PR Jr, Kalko EKV, Jordano P, Aguiar MAM (2011b) The modularity of seed dispersal: differences in structure and robustness between bat- and bird-fruit networks. Oecologia Accepted with revisionGoogle Scholar
  34. Mello MAR, Marquitti FMD, Guimarães PR Jr, Kalko EKV, Jordano P, de Aguiar MAM (2011c) The missing part of seed dispersal networks: structure and robustness of bat-fruit interactions. PLoS ONE 6(2):e17395. doi: 10.1371/journal.pone.0017395 PubMedCrossRefGoogle Scholar
  35. Michener CD (1975) The Brazilian bee problem. Annu Rev Entomol 20:399–416PubMedCrossRefGoogle Scholar
  36. Myers N, Mittermeier RA, Mittermeier CG, Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858PubMedCrossRefGoogle Scholar
  37. Nooy W, Mrvar A, Batagelj V (2005) Exploratory social network analysis with Pajek. Cambridge University Press, New YorkCrossRefGoogle Scholar
  38. Olesen JM, Bascompte J, Dupont YL, Jordano P (2007) The modularity of pollination networks. Proc Nat Acad Sci USA 104(50):19891–19896. doi: 10.1073/pnas.0706375104 PubMedCrossRefGoogle Scholar
  39. Ollerton J, Price V, Armbruster WS, Memmott J, Watts S, Waser NM, Totland Ø, Goulson D, Alarcón R, Stout JC, Tarrant S (2012) Overplaying the role of honey bees as pollinators: a comment on Aebi and Neumann (2011). Trends Ecol Evol 27(3):141–142. doi: 10.1016/j.tree.2011.12.001 PubMedCrossRefGoogle Scholar
  40. Padron B, Traveset A, Biedenweg T, Diaz D, Nogales M, Olesen JM (2009) Impact of alien plant invaders on pollination networks in two archipelagos. PLoS ONE 4(7):e6275. doi: 10.1371/journal.pone.0006275 PubMedCrossRefGoogle Scholar
  41. Prado DE (2000) Seasonally dry forests of tropical South America: from forgotten ecosystems to a new phytogeographic unit. Edinb J Bot 57:437–461CrossRefGoogle Scholar
  42. Prado DE, Gibbs PE (1993) Patterns of species distributions in the dry seasonal forest of South America. Ann Mo Bot Gard 80:902–927CrossRefGoogle Scholar
  43. Romanuk TN, Zhou Y, Brose U, Berlow EL, Williams RJ, Martinez ND (2009) Predicting invasion success in complex ecological networks. Philos Trans R Soc B Biol Sci 364:1743–1754. doi: 10.1098/rstb.2008.0286 CrossRefGoogle Scholar
  44. Takhtajan A (1986) Floristic regions of the world. University of California Press, BerkeleyGoogle Scholar
  45. Walker BH (1992) Biodiversity and ecological redundancy. Conserv Biol 6(1):18–23. doi: 10.1046/j.1523-1739.1992.610018.x CrossRefGoogle Scholar
  46. Zanella FCV, Martins CF (2003) Abelhas da caatinga: biogeografia, ecologia e conservação. In: Leal IR, Tabarelli M, Silva JMC (eds) Ecologia e conservação da caatinga. Editora Universitária da UFPE, Recife, p 804Google Scholar
  47. Zar JH (1996) Biostatistical analysis. Prentice-Hall, New JerseyGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Gilberto M. de M. Santos
    • 1
  • Cândida M. L. Aguiar
    • 1
  • Julieta Genini
    • 2
  • Celso F. Martins
    • 3
  • Fernando C. V. Zanella
    • 4
  • Marco A. R. Mello
    • 5
    Email author
  1. 1.Departamento de Ciências BiológicasUniversidade Estadual de Feira de SantanaFeira de SantanaBrazil
  2. 2.Departamento de BotânicaUniversidade Estadual PaulistaRio ClaroBrazil
  3. 3.Departamento de Sistemática e Ecologia/CCENUniversidade Federal da ParaíbaJoão PessoaBrazil
  4. 4.Departamento de Engenharia FlorestalUniversidade Federal de Campina GrandePatosBrazil
  5. 5.Institut für Experimentelle ÖkologieUniversität UlmUlmGermany

Personalised recommendations