Biological Invasions

, Volume 14, Issue 10, pp 2187–2201 | Cite as

Cryptic species of the Eucypris virens species complex (Ostracoda, Crustacea) from Europe have invaded Western Australia

Original Paper

Abstract

Eucypris virens, an ostracod with mixed reproduction and Holarctic distribution, forms a species complex with more than 35 cryptic species in Europe. Here, we analysed COI and LSU DNA sequence data from Western Australian E. virens to distinguish between the possibilities that vicariant processes have led to the formation of Australian E. virens species or that these ostracods have been introduced into Western Australia. Phylogenetic reconstructions, genetic networks and estimates of genetic distances all show clearly that Western Australian and European E. virens are very closely related. Some haplotypes are identical, others are only separated by one or two mutational steps. Among the Western Australian representatives of E. virens, three phylogenetic clades can be distinguished. We identified three European cryptic species as ancestors for two of the Western Australian clades and one close relative to the third Western Australian clade. We therefore conclude that E. virens has been introduced into Western Australia, most likely from western Europe, and did not diverge in Australia. In Europe, E. virens shows a typical pattern of geographic parthenogenesis while we found only asexual populations in Western Australia.

Keywords

Phylogeny Network Genetic distances Cryptic species COI 

Notes

Acknowledgments

The authors gratefully acknowledge the financial support by an ABRS-grant (nr RF211-33: ‘Biodiversity and taxonomy of Ostracoda (Crustacea) from temporary water bodies of inland Western Australia’) and of the Edith Cowan University Industry Collaboration grant. K.M. and I.S. are grateful to Bennelongia Pty Ltd for financial support during their scientific stay in Perth (2010) and acknowledge the financial contribution of the FWO Vlaanderen (Fund for Scientific Research, Flanders) for their travel grants in 2010 (V4.172.10N and V4.173.10N). K.M. and I.S. also acknowledge the financial contribution of projects 1.5.172.09 (krediet aan navorsers) and G.0118.03N (projectonderzoek) of the FWO Vlaanderen (Fund for Scientific Research, Flanders). A.K. was supported by Academic Study Leave funding from the School of Natural Sciences and the Centre for Ecosystem Management, Edith Cowan University. The database of the European E. virens distribution originated from an EU Marie Curie Research Training Network ‘SexAsex’ (from Sex to Asex: a case study on interactions between sexual and asexual reproduction, contract MRTN-CT-2004-512492) of which K.M. was PI. We thank Kristiaan Hoedemakers for technical help with the figures.

Supplementary material

10530_2012_224_MOESM1_ESM.jpg (246 kb)
Supplementary material 1 (JPEG 103 kb)

References

  1. Adamowicz SJ, Petrusek A, Colbourne JK, Hebert PDN, Witt JDS (2009) The scale of divergence: a phylogenetic appraisal of intercontinental allopatric speciation in a passively dispersed freshwater zooplankton genus. Mol Phyl Evol 50:423–436CrossRefGoogle Scholar
  2. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410PubMedGoogle Scholar
  3. Bamford M, Watkins D, Bancroft W, Tischler G, Wahl J (2006) Migratory shorebirds of the East Asian–Australasian Flyway; population estimates and internationally important sites. Wetlands International Global Series, Wetlands International, WageningenGoogle Scholar
  4. Barclay MH (1966) An ecological study of a temporary pond near Auckland, New Zealand. Aust J Mar Freshw Res 17:239–258. doi: 10.1071/MF9660239 CrossRefGoogle Scholar
  5. Bode SNS, Lamatsch DK, Martins MJF, Schmit O, Vandekerkhove J, Mezquita F, Namiotko T, Rossetti G, Schön I, Butlin RK, Martens K (2010) Exceptional cryptic diversity and multiple origins of parthenogenesis in a freshwater ostracod. Mol Phylogenet Evol 5:542–552CrossRefGoogle Scholar
  6. Brandao NS, Sauer J, Schön I (2010) Circumantarctic distribution in Southern Ocean benthos? A genetic test using the genus Macroscapha (Crustacea, Ostracoda) as a model. Mol Phylogenet Evol 55:1055–1069PubMedCrossRefGoogle Scholar
  7. Bronshtein ZS (1947) Freshwater Ostracoda. Fauna of the USSR. Crustaceans, vol II, Number I. [English edition (1988)]. Amerind Publications, New DelhiGoogle Scholar
  8. Cale DJ, Halse SA, Walker CD (2004) Wetland monitoring in the Wheatbelt of south-west Western Australia: site descriptions, waterbird, aquatic invertebrate and groundwater data. Conserv Sci West Aust 5:20–135Google Scholar
  9. Clarke KR, Gorley RN (2006) PRIMER v6: user manual/tutorial. PRIMER-E, PlymouthGoogle Scholar
  10. Clement M, Posada D, Crandall K (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 9:1657–1660PubMedCrossRefGoogle Scholar
  11. Davis J, Christidis F (1997) A guide to wetland invertebrates of southwestern Australia. Western Australian Museum, PerthGoogle Scholar
  12. De Deckker P (1977) The distribution of the “giant” ostracods (family: Cyprididae, Baird 1845) endemic to Australia. In: Löffler H, Danielopol D (eds) Aspects of ecology and zoogeography of recent and fossil ostracods. Junk, The Hague, pp 285–294Google Scholar
  13. De Deckker P (1981) Ostracoda from Australian inland waters—notes on taxonomy and ecology. Trans R Soc Victoria 93:43–85Google Scholar
  14. De Deckker P (1983) Notes on the ecology and distribution of ostracods in Australia. Hydrobiologia 106:223–234CrossRefGoogle Scholar
  15. Decaestecker E, De Meester L, Mergeay J (2009) Cyclical parthenogenesis in Daphnia: sexual versus asexual reproduction. In: Schön I, Martens K, Van Dijk P (eds) Lost sex. The evolutionary biology of parthenogenesis. Springer Academic, Dordrecht, pp 295–316Google Scholar
  16. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797PubMedCrossRefGoogle Scholar
  17. Estoup A, Guillemaud T (2010) Invited review: reconstructing routes of invasion using genetic data: why, how and so what? Mol Ecol 19:4113–4130CrossRefGoogle Scholar
  18. Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol 3:294–299PubMedGoogle Scholar
  19. Geddes MC, De Deckker P, Williams WD, Morton DW, Topping M (1981) On the chemistry and biota of some saline lakes in Western Australia. Hydrobiologia 82:201–222CrossRefGoogle Scholar
  20. Guindon S, Gascuel O (2003) PhyML—a simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704PubMedCrossRefGoogle Scholar
  21. Heethoff M, Domes K, Laumann M, Maraun M, Norton RA, Scheu S (2006) High genetic divergences indicate ancient separation of parthenogenetic lineages of the oribatid mite Platynothrus peltifer (Acari, Oribatida). J Evol Biol 20:392–402CrossRefGoogle Scholar
  22. Heethoff M, Roy AN, Scheu S, Maraun M (2009) Parthenogenesis in oribatid mites (Acari, Oribatida): evolution without sex. In: Schön I, Martens K, Van Dijk P (eds) Lost sex. The evolutionary biology of parthenogenesis. Springer Academic, Dordrecht, pp 241–258Google Scholar
  23. Horne DJ (2007) A mutual temperature range method for Quaternary palaeoclimatic analysis using European nonmarine Ostracoda. Quat Sci Rev 26:1398–1415CrossRefGoogle Scholar
  24. Horne DJ, Martens K (1999) Geographical parthenogenesis in European non-marine ostracods: post-glacial invasion or Holocene stability? Hydrobiologia 391:1–7CrossRefGoogle Scholar
  25. Horne DJ, Baltanas A, Paris G (1998) Geographical distribution of reproductive modes in living non-marine ostracods. In: Martens K (ed) Sex and parthenogenesis: evolutionary ecology of reproductive modes in non-marine ostracods. Backhuys, Leiden, pp 77–99Google Scholar
  26. Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755PubMedCrossRefGoogle Scholar
  27. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948PubMedCrossRefGoogle Scholar
  28. Loxdale H (2009) What’s in a clone. The rapid evolution of aphid asexual lineages in relation to geography, host plant adaptation and resistance to pesticides. In: Schön I, Martens K, Van Dijk P (eds) Lost sex. The evolutionary biology of parthenogenesis. Springer Academic, Dordrecht, pp 535–558Google Scholar
  29. Martens K (1998) Sex and ostracods: a new synthesis. In: Martens K (ed) Sex and parthenogenesis: evolutionary ecology of reproductive modes in non-marine ostracods. Backhuys, Leiden, pp 295–321Google Scholar
  30. Martens K, Rossetti G, Baltanas A (1998) Reproductive modes and taxonomy. In: Martens K (ed) Sex and parthenogenesis: evolutionary ecology of reproductive modes in non-marine ostracods. Backhuys, Leiden, pp 197–214Google Scholar
  31. Martens K, Rossetti G, Horne DJ (2003) How ancient are ancient asexuals? Proc R Soc Lond B 270:723–729CrossRefGoogle Scholar
  32. Martens K, Schön I, Meisch C, Horne DJ (2008) Global diversity of ostracods (Ostracoda, Crustacea) in freshwater. Hydrobiologia 595:185–193CrossRefGoogle Scholar
  33. Maynard Smith J (1998) Evolutionary genetics, 2nd edn. Oxford University Press, OxfordGoogle Scholar
  34. Meisch C (2000) Freshwater Ostracoda of Western and Central Europe. Süsswasserfauna von Mitteleuropa 8/3. Spektrum Akademischer Verlag, HeidelbergGoogle Scholar
  35. Pinder AM, Halse SA, McRae JM, Shiel RJ (2004) Aquatic invertebrate assemblages of wetlands and rivers in the wheatbelt region of Western Australia. Rec West Aust Mus Suppl 67:7–37Google Scholar
  36. Posada D (2008) jModelTest: phylogenetic model averaging. Mol Biol Evol 25:1253–1256PubMedCrossRefGoogle Scholar
  37. Rossi V, Schön I, Butlin RK, Menozzi P (1998) Clonal genetic diversity. In: Martens K (ed) Sex and parthenogenesis: evolutionary ecology of reproductive modes in non-marine ostracods. Backhuys, Leiden, pp 257–274Google Scholar
  38. Schmidt HA, Strimmer K, Vingron M, von Haeseler A (2002) TREE-PUZZLE: maximum likelihood phylogenetic analysis using quartets and parallel computing. Bioinformatics 18:502–504PubMedCrossRefGoogle Scholar
  39. Schön I (2007) Did Pleistocene glaciations shape genetic patterns of European ostracods? A phylogeograpic analysis of two species with asexual reproduction. Hydrobiologia 575:30–50CrossRefGoogle Scholar
  40. Schön I, Gandolfi A, Di Masso E, Rossi V, Griffiths HI, Martens K, Butlin RK (2000) Persistence of asexuality through mixed reproduction in Eucypris virens (Crustacea, Ostracoda). Heredity 84:161–169PubMedCrossRefGoogle Scholar
  41. Schön I, Rossetti G, Martens K (2009) Darwinulid ostracods: ancient asexual scandals or scandalous gossip? In: Schön I, Martens K, Van Dijk P (eds) Lost sex. The evolutionary biology of parthenogenesis. Springer Academic, Dordrecht, pp 217–240Google Scholar
  42. Schön I, Martens K, Halse S (2010) Genetic diversity in Australian ancient asexual Vestalenula (Ostracoda, Darwinulidae)—little variability down-under. Hydrobiologia 641:59–70CrossRefGoogle Scholar
  43. Serra M, Snell TW (2009) Sex loss in rotifers. In: Schön I, Martens K, Van Dijk P (eds) Lost sex. The evolutionary biology of parthenogenesis. Springer Academic, Dordrecht, pp 281–294Google Scholar
  44. Smith MJ, Kay WR, Edward DHD, Papa PJ, Richardson K, St J, Simpson JC, Pinder AM, Cale DJ, Horwitz PHJ, Davis JA, Yung FH, Norris RH, Halse SA (1999) AusRivAS: using macroinvertebrates to assess ecological condition of rivers in Western Australia. Freshw Biol 41:269–282CrossRefGoogle Scholar
  45. Tait CJ, Daniels CB, Hill RS (2005) Changes in species assemblages within the Adelaide metropolitan area, Australia, 1836–2002. Ecol Appl 15:346–359CrossRefGoogle Scholar
  46. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetic analysis using likelihood, distance and parsimony methods. Mol Biol Evol. doi: 10.1093/molbev/msr121 Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • A. Koenders
    • 1
  • K. Martens
    • 2
    • 3
  • S. Halse
    • 4
  • I. Schön
    • 2
    • 5
  1. 1.Centre for Ecosystem ManagementEdith Cowan UniversityJoondalupAustralia
  2. 2.Freshwater BiologyRoyal Belgian Institute of Natural SciencesBrusselsBelgium
  3. 3.Department of BiologyUniversity of GhentGhentBelgium
  4. 4.Bennelongia Environmental ConsultantsJolimontAustralia
  5. 5.Research Group ZoologyUniversity of HasseltDiepenbeekBelgium

Personalised recommendations