Biological Invasions

, Volume 13, Issue 5, pp 1195–1208 | Cite as

The significance of the sub-Antarctic Kerguelen Islands for the assessment of the vulnerability of native communities to climate change, alien insect invasions and plant viruses

  • M. Lebouvier
  • M. Laparie
  • M. Hullé
  • A. Marais
  • Y. Cozic
  • L. Lalouette
  • P. Vernon
  • T. Candresse
  • Y. Frenot
  • David RenaultEmail author
Original Paper


The suite of environments and anthropogenic modifications of sub-Antarctic islands provide key opportunities to improve our understanding of the potential consequences of climate change and biological species invasions on terrestrial ecosystems. The profound impact of human introduced invasive species on indigenous biota, and the facilitation of establishment as a result of changing thermal conditions, has been well documented on the French sub-Antarctic Kerguelen Islands (South Indian Ocean). The present study provides an overview of the vulnerability of sub-Antarctic terrestrial communities with respect to two interacting factors, namely climate change and alien insects. We present datasets assimilated by our teams on the Kerguelen Islands since 1974, coupled with a review of the literature, to evaluate the mechanism and impact of biological invasions in this region. First, we consider recent climatic trends of the Antarctic region, and its potential influence on the establishment, distribution and abundance of alien insects, using as examples one fly and one beetle species. Second, we consider to what extent limited gene pools may restrict alien species’ colonisations. Finally, we consider the vulnerability of native communities to aliens using the examples of one beetle, one fly, and five aphid species taking into consideration their additional impact as plant virus vectors. We conclude that the evidence assimilated from the sub-Antarctic islands can be applied to more complex temperate continental systems as well as further developing international guidelines to minimise the impact of alien species.


Colonisation Endemic species Environmental variables Human impact Introduced species Island communities Species richness 



We are very grateful to Dr. Jean-François Voisin for helpful discussions concerning the distribution of aphids in the early 1960s and to Jean-Christophe Simon for valuable information on the genetics of Rhopalosiphum padi. The authors thank Dr. Gail Schofield and Dr. Jonathan Wilson for helpful amendments on a previous version of our manuscript. This research was supported by the “Institut Polaire Francais” (IPEV 136), the CNRS (Zone Atelier de Recherches sur l’Environnement Antarctique et Subantarctique) and the “Agence Nationale de la Recherche” (ANR-07-VULN-004, EVINCE). This research is linked with the SCAR Evolution and Biodiversity in the Antarctic research programme. Mathieu Laparie is supported by a fellow from the MENRT (Université de Rennes 1, France).


  1. Antarctic Treaty Consultative Meeting (2003) Final report of the twenty-sixth Antarctic treaty consultative meeting. Madrid, 9–20 June 2003Google Scholar
  2. Atkinson D (1994) Temperature and organism size: a biological law for ectotherms? Adv Ecol Res 25:1–58CrossRefGoogle Scholar
  3. Bergstrom D, Chown SL (1999) Life at the front: history, ecology and change on southern ocean islands. Trends Ecol Evol 14:427–477CrossRefGoogle Scholar
  4. Bergstrom DM, Convey P, Huiskes AHL (2006) Trends in Antarctic terrestrial and limnetic ecosystems: Antarctica as a global indicator. Springer, NetherlandsCrossRefGoogle Scholar
  5. Blackman RL, Eastop VF (2000) Aphids on the world’s crops: an identification and information guide, 2nd edn. Wiley, ChichesterGoogle Scholar
  6. Blondel P (1995) Biogéographie, approche écologique et évolutive. Editions Masson Collection Ecologie, ParisGoogle Scholar
  7. Bokhorst S, Huiskes AHL, Convey P, Aerts R (2007) The effect of environmental change on vascular plant and cryptogam communities from the Falkland Is and the Maritime Antarctic. BMC Ecol. doi: 10.1186/1472-6785-7-15
  8. Borer ET, Hosseini PR, Seabloom EW, Dobson AP (2007) Pathogen-induced reversal of native dominance in a grassland community. Proc Nat Acad Sci 104:5473–5478PubMedCrossRefGoogle Scholar
  9. Borges PAV, Lobo JM, de Azevedo EB, Gaspar CS, Melo C, Nunes LV (2006) Invasibility and species richness of island endemic arthropods: a general model of endemic vs. exotic species. J Biogeogr 33:169–187CrossRefGoogle Scholar
  10. Brandjes GJ, Block W, Ernsting G (1999) Spatial dynamics of two introduced species of carabid beetles on the sub-Antarctic island of South Georgia. Polar Biol 21:326–334CrossRefGoogle Scholar
  11. Byers JE (2002) Impact of non-indigenous species on natives enhanced by anthropogenic alteration of selection regimes. Oikos 97:449–458CrossRefGoogle Scholar
  12. Carlquist S (1974) Island biology. Columbia University Press, New York and LondonGoogle Scholar
  13. Chevrier M (1996) Introduction de deux espèces d’insectes aux Îles Kerguelen : processus de colonisation et exemples d’interactions. Ph.D Thesis, Université de Rennes 1, FranceGoogle Scholar
  14. Chevrier M, Vernon P, Frenot Y (1997) Potential effects of two alien insects on a subantarctic wingless fly in the Kerguelen Islands. In: Battaglia B, Valencia J, Walton DWH (eds) Antarctic communities: species, structure and survival. Cambridge University Press, Cambridge, pp 424–431Google Scholar
  15. Chown SL, Gaston KJ (2000) Areas, cradles and museums: the latitudinal gradient in species richness. Trends Ecol Evol 15:311–315PubMedCrossRefGoogle Scholar
  16. Chown SL, Lee JE (2009) Antarctic islands, biology. In: Gillespie RG, Clague DA (eds) Encyclopedia of islands. University of California Press, Berkeley, pp 10–17Google Scholar
  17. Chown SL, Smith VR (1993) Climate change and the short-term impact of feral house mice at the sub-Antarctic Prince Edward Islands. Oecologia 96:508–516CrossRefGoogle Scholar
  18. Chown SL, Gremmen NJM, Gaston KJ (1998) Ecological biogeography of Southern islands: species-area relationships, human impacts and conservation. Am Nat 152:562–575PubMedCrossRefGoogle Scholar
  19. Chown SL, Hull B, Gaston KJ (2005) Human impacts, energy availability and invasion across Southern Ocean Islands. Global Ecol Biogeogr 14:521–528CrossRefGoogle Scholar
  20. Chown SL, Lee JE, Shaw JD (2008a) Conservation of Southern Ocean Islands: invertebrates as exemplars. J Insect Conserv 12:277–291CrossRefGoogle Scholar
  21. Chown SL, Sinclair BJ, van Vuuren BJ (2008b) DNA barcoding and the documentation of alien species establishment on sub-Antarctic Marion Island. Polar Biol 31:651–655CrossRefGoogle Scholar
  22. Chown SL, Spear D, Lee JE, Shaw JD (2009) Animal introductions to southern systems: lessons for ecology and for policy. Afr Zool 44:248–262CrossRefGoogle Scholar
  23. Chwedorzewska KJ (2009) Terrestrial Antarctic ecosystems in the changing world: an overview. Polish Polar Res 30:263–276CrossRefGoogle Scholar
  24. Clavero M, García-Berthou E (2005) Invasive species are a leading cause of animal extinctions. Trends Ecol Evol 20:110PubMedCrossRefGoogle Scholar
  25. Colautti R, Ricciardi A, Grigorovich IA, MacIsacc HJ (2004) Is invasion success explained by the enemy release hypothesis? Ecol Lett 8:721–733CrossRefGoogle Scholar
  26. Connor EF, McCoy ED (1979) The statistics and biology of the species-area relationship. Am Nat 121:789–824Google Scholar
  27. Convey P (1996a) Overwintering strategies of terrestrial invertebrates in Antarctica—the significance of flexibility in extremely seasonal environments. Eur J Entomol 93:489–505Google Scholar
  28. Convey P (1996b) The influence of environmental characteristics on life history attributes of Antarctic terrestrial biota. Biol Rev 71:191–225CrossRefGoogle Scholar
  29. Convey P (2001) Terrestrial ecosystem response to climate changes in the Antarctic. In: Walther GR, Burga CA, Edwards PJ (eds) “Fingerprints” of climate change–adapted behaviour and shifting species ranges. Kluwer, New York, pp 17–42Google Scholar
  30. Convey P, Lebouvier M (2009) Environmental change and human impacts on terrestrial ecosystems of the sub-Antarctic islands between their discovery and the mid-twentieth century. Papers and proceedings of the royal society of Tasmania, vol 143, pp 33–44Google Scholar
  31. Convey P, Pugh PJA, Jackson C, Murray AW, Ruhland CT, Xiong FS, Day TA (2002) Response of Antarctic terrestrial arthropods to multifactorial climate manipulation over a four year period. Ecology 83:3130–3140CrossRefGoogle Scholar
  32. Convey P, Frenot Y, Gremmen N, Bergstrom D (2006) Biological Invasions. In: Bergstrom DM, Convey P, Huiskes AHL (eds) Trends in Antarctic terrestrial and limnetic ecosystems. Springer, NetherlandsGoogle Scholar
  33. Cooper J, Bester MN, Chown SL, Crawford RM, Daly R, Heyns E, Lamont T, Ryan PG, Shaw JD (2009) Biological survey of the Prince Edward Islands. S Afr J Sci 105:317–320Google Scholar
  34. Crafford JE, Scholtz CH, Chown SL (1986) The insects of sub-Antarctic Marion and Prince Edward Islands, with a bibliography of entomology of the Kerguelen biogeographical province. S Afr J Antarct Res 16:41–84Google Scholar
  35. Darlington PJ (1970) Coleoptera: Carabidae of South Georgia. Pac Insect Monogr 23:234Google Scholar
  36. Davies L (2006) Lifetime reproductive output of Calliphora vicina and Lucilia sericata in outdoor caged and field populations; flight vs. egg production? Med Vet Entomol 20:453–458PubMedCrossRefGoogle Scholar
  37. Davies L, Ratcliffe GG (1994) Development rates of some pre-adults stages in blowflies with reference to low temperatures. Med Vet Entomol 8:245–254PubMedCrossRefGoogle Scholar
  38. Delmotte F, Leterme N, Bonhomme J, Rispe C, Simon JC (2001) Multiple routes to asexuality in an aphid species. Proc R Soc Lond B 268:2291–2299CrossRefGoogle Scholar
  39. Delmotte F, Sabater-Munoz B, Prunier-Leterme N, Latorre A, Sunnucks P, Rispe C, Simon JC (2003) Phylogenetic evidence for hybrid origins of asexual lineages in an aphid species. Evolution 57:1291–1303PubMedGoogle Scholar
  40. Ernsting G (1993) Observations on life cycle and feeding ecology of two recently introduced predatory beetle species at South Georgia, sub-Antarctic. Polar Biol 13:423–428CrossRefGoogle Scholar
  41. Fereres A, Moreno A (2009) Behavioural aspects influencing plant virus transmission by homopteran insects. Virus Res 141:158–168PubMedCrossRefGoogle Scholar
  42. French DD, Smith VR (1985) A comparison between northern and southern hemisphere tundras and related ecosystems. Polar Biol 5:5–21CrossRefGoogle Scholar
  43. Frenot Y, Gloaguen JC, Massé L, Lebouvier M (2001) Human activities, ecosystem disturbance and plant invasions in sub—Antarctic Crozet, Kerguelen and Amsterdam Islands. Biol Conserv 101:33–50CrossRefGoogle Scholar
  44. Frenot Y, Chown SL, Whinam J, Selkirk PM, Convey P, Skotnicki M, Bergstrom DM (2005) Biological invasions in the Antarctic: extent, impacts and implications. Biol Rev 80:45–72PubMedCrossRefGoogle Scholar
  45. Frenot Y, Lebouvier M, Chapuis JL, Gloaguen JC, Hennion F, Vernon P (2006) Impact des changements climatiques et de la fréquentation humaine sur la biodiversité des îles subantarctiques françaises. Belgeo 3:363–372Google Scholar
  46. Gaston KJ, Jones AG, Hänel C, Chown SL (2003) Rates of species introduction to a remote oceanic island. Proc R Soc Lond B 270:1091–1098CrossRefGoogle Scholar
  47. Gibbs Aj, Trueman JW, Gibbs MJ (2008) A bean common mosaic virus lineage of potyviruses: where did it arise and when? Arch Virol 153:2177–2187PubMedCrossRefGoogle Scholar
  48. Gillespie RG (1999) Naiveté and novel perturbations: conservation of native spiders on an oceanic island system. J Insect Conserv 3:263–272CrossRefGoogle Scholar
  49. Gillespie RG, Clague DA (2009) Encyclopedia of islands. University of California Press, BerkeleyGoogle Scholar
  50. Gillespie RG, Roderick GK (2002) Arthropods on islands: colonization, speciation, and conservation. Annu Rev Entomol 47:595–632PubMedCrossRefGoogle Scholar
  51. Greenslade P (2006) The invertebrates of Macquarie island. Australian Antarctic Division, KingstonGoogle Scholar
  52. Gressitt JL (1970) Subantarctic entomology, particularly of South Georgia and Heard Island. Pac Insect Monogr 23:1–374Google Scholar
  53. Gressitt JL (1971) Antarctic entomology with emphasis on biogeographical aspects. Pac Insect Monogr 25:167–178Google Scholar
  54. Gurevitch J, Padilla DK (2004) Are invasive species a major cause of extinctions? Trends Ecol Evol 19:470–474PubMedCrossRefGoogle Scholar
  55. Hänfling B, Kollmann J (2002) An evolutionary perspective of biological invasions. Trends Ecol Evol 17:545–546CrossRefGoogle Scholar
  56. Headland RK (1984) The island of South Georgia. Cambridge University Press, CambridgeGoogle Scholar
  57. Herben T (2005) Species pool size and invasibility of island communities: a null model of sampling effects. Ecol Lett 8:909–917CrossRefGoogle Scholar
  58. Hoffmeister TS, Vet LEM, Biere A, Holsinger K, Filser J (2005) Ecological and evolutionary consequences of biological invasion and habitat fragmentation. Ecosystems 8:657–667CrossRefGoogle Scholar
  59. Huiskes AHL, Convey P, Bergstrom DM (2006) Trends in Antarctic terrestrial and limnetic ecosystems: Antarctica as a global indicator. In: Bergstrom DM, Convey P, Huiskes AHL (eds) Trends in Antarctic terrestrial and limnetic ecosystems. Springer, Netherlands, pp 1–13CrossRefGoogle Scholar
  60. Hullé M, Pannetier D, Maurice D, Courmont L, Chaillon C, Chaillon PE, Saccone P, Hébert C, Gracia M, Buffin J, Simon JC, Frenot Y (2003a) Aphids from Kerguelen and Crozet Islands, sub-Antarctic. In: Huiskes AHL, Gieskes WWC, Rozema J, Schorno RML, van der Vies S, Wolff WJ (eds) VIII SCAR international biology symposium: Antarctic biology in a global context. Backhuys, Leiden, pp 308–312Google Scholar
  61. Hullé M, Pannetier D, Simon JC, Vernon P, Frenot Y (2003b) Aphids (Hemiptera: Aphididae) of subantarctic Îles Crozet and Kerguelen: species diversity, host range and spatial distribution. Antarct Sci 15:203–209CrossRefGoogle Scholar
  62. Jeannel R (1940) Croisière du Bougainville aux îles australes françaises. III. Coléoptères. Mémoires du Muséum National d’Histoire Naturelle, France, série A 14:63–202Google Scholar
  63. Johns PM (1974) Arthropoda of the sub-Antarctic islands of New Zealand. 1. Coleoptera: Carabidae. Southern New Zealand, Patagonian and Falkland Islands insular Carabidae. J Roy Soc New Zeal 4:283–302Google Scholar
  64. Kenis M, Auger-Rozenberg M, Roques A, Timms L, Péré C, Cock M, Settele J, Augustin S, Lopez-Vaamonde C (2009) Ecological effects of invasive alien insects. Biol Invasions 11:21–45CrossRefGoogle Scholar
  65. Kingsolver JG, Huey RB (2008) Size, temperature, and fitness: three rules. Evol Ecol Res 10:251–268Google Scholar
  66. Kolar CS, Lodge DM (2001) Progress in invasion biology: predicting invaders. Trends Ecol Evol 16:199–204PubMedCrossRefGoogle Scholar
  67. Lalouette L (2009) Impact de l’activité anthropique et des changements climatiques sur le succès envahissant de Merizodus soledadinus (Coleoptera, Carabidae) introduit aux îles Kerguelen. Ph.D Thesis, Université de Rennes 1, FranceGoogle Scholar
  68. Lalouette L, Kaufmann B, Konecny L, Renault D, Douady CJ (2009) Characterization and PCR multiplexing of 14 new polymorphic microsatellite loci for the invasive subantarctic carabid Merizodus soledadinus (Coleoptera: Carabidae). Conservation Genet Resour 1:455–458CrossRefGoogle Scholar
  69. Laparie M, Lebouvier M, Lalouette L, Renault D (2010) Variation of morphometric traits in populations of an invasive carabid predator (Merizodus soledadinus) within a sub-Antarctic island. Biol Invasions. doi: 10.1007/s10530-010-9739-2
  70. Levine JM, Vila M, D’Antonio CM, Dukes JS, Grigulis K, Lavorel S (2003) Mechanisms underlying the impacts of exotic plant invasions. Proc R Soc Lond B 270:775–781CrossRefGoogle Scholar
  71. Liu H, Stiling P (2006) Testing the enemy release hypothesis: a review and meta-analysis. Biol Invasions 8:1535–1545CrossRefGoogle Scholar
  72. Malmström CM, McCullough AJ, Johnson HA, Newton LA, Borer ET (2005) Invasive annual grasses indirectly increase virus incidence in California native perennial bunchgrasses. Oecologia 145:153–164PubMedCrossRefGoogle Scholar
  73. Malmström CM, Stoner CJ, Brandenburg S, Newton LA (2006) Virus infection and grazing exert counteracting influences on survivorship of native bunchgrass seedlings competing with invasive exotics. J Ecol 94:264–275PubMedCrossRefGoogle Scholar
  74. Marais A, Faure C, Candresse T, Hullé M (2010) First report of nasturtium as a natural host of Cherry leaf roll virus on Amsterdam Island. Plant Dis 95:477CrossRefGoogle Scholar
  75. Mariluis JC, Schnack JA, Mulieri PB, Patitucci LD (2008) Calliphoridae (Diptera) from wild, suburban, and urban sites at three Southeast Patagonian localities. Rev Soc Entomol Argent 67:107–114Google Scholar
  76. Mooney HA, Cleland EE (2001) The evolutionary impact of invasive species. Proc Nat Acad Sci 98:5446–5451PubMedCrossRefGoogle Scholar
  77. Murphy ST, Cheesman OD (2006) The aid trade—international assistance programs as pathways for the introduction of invasive alien species—a preliminary report. The World Bank Environment Department, Washington DC, USAGoogle Scholar
  78. Nault LR (1997) Arthropod transmission of plant viruses: a new synthesis. Ann Entomol Soc Amer 90:521–541Google Scholar
  79. Nuorteva P (1967) Observation on the blowflies (Dipt. Calliphoridae) from Spitsbergen. Ann Entomol Fenn 33:62–64Google Scholar
  80. Olden JD, Poff NL (2003) Toward a mechanistic understanding and prediction of biotic homogenization. Amer Naturalist 162:442–460CrossRefGoogle Scholar
  81. Olden JD, Poff NL, Douglas MR, Douglas ME, Fausch KD (2004) Ecological and evolutionary consequences of biotic homogenization. Trends Ecol Evol 19:18–24PubMedCrossRefGoogle Scholar
  82. Polischuk V, Budzanivska I, Shevchenko T, Oliynik S (2007) Evidence for plant viruses in the region of Argentina Islands, Antarctica. FEMS Microbiol Ecol 59:409–417PubMedCrossRefGoogle Scholar
  83. Richardson DM, Pysek P (2008) Fifty years of invasion ecology—the legacy of Charles Elton. Diversity Distrib 14:161–168CrossRefGoogle Scholar
  84. Roderick GK, Vernon P (2009) Invasion biology. In: Gillespie RG, Clague DA (eds) Encyclopedia of islands. University of California Press, Berkeley, pp 475–480Google Scholar
  85. Schermann-Legionnet A, Hennion F, Vernon P, Atlan A (2007) Breeding system of the sub-Antarctic plant species Pringlea antiscorbutica R. Br. and search for potential insect pollinators in the Kerguelen Islands. Polar Biol 30:1183–1193CrossRefGoogle Scholar
  86. Schnack JA, Mariluis JC (2004) Calliphoridae (Diptera) from Southeastern Argentinean Patagonia: species composition and abundance. Rev Soc Entomol Argent 63:85–91Google Scholar
  87. Schnack JA, Mariluis JC, Spinelli GR, Muzón J (1998) Ecological aspects on urban blowflies in Midwest Argentinean Patagonia (Diptera: Calliphoridae). Rev Soc Entomol Argent 57:127–130Google Scholar
  88. Shaw JD, Spear D, Greve M, Chown SL (2010) Taxonomic homogenization and differentiation across Southern Ocean Islands differ among insects and vascular plants. J Biogeogr 37:217–228CrossRefGoogle Scholar
  89. Shewell GE (1987) Calliphoridae. In: McAlpine JF, Peterson BV, Shewell GE, Teskey HJ, Vockeroth JR, Wood DM (eds) Manual of nearctic Diptera, vol 2. Research Branch Agriculture, Canada, pp 1133–1145Google Scholar
  90. Simberloff D (2003) Confronting introduced species: a form of xenophobia? Biol Invasions 5:179–192CrossRefGoogle Scholar
  91. Simberloff D, Martin JL (1991) Nestedness of insular avifaunas, simple summary statistics masking complex species patterns. Ornis Fennica 68:178–192Google Scholar
  92. Simon JC, Leterme N, Delmotte F, Martin O, Estoup A (2001) Isolation and characterisation of microsatellite loci in the aphid species, Rhopalosiphum padi. Mol Ecol Notes 1:6–8CrossRefGoogle Scholar
  93. Skotnicki ML, Selkirk PM, Kitajima E, Mcbride TP, Shaw J, Mackenzie A (2003) The first sub-Antarctic plant virus report: Stilbocarpa bacilliform badnavirus (SMBV) from Macquarie Island. Polar Biol 26:1–7Google Scholar
  94. Smith VR (2002) Climate change in the sub-Antarctic: an illustration from Marion Island. Climatic Change 52:345–357CrossRefGoogle Scholar
  95. Smith VR (2008) Energy flow and nutrients cycling in the Marion Island terrestrial ecosystem: 30 years on. Polar Record 44:211–226CrossRefGoogle Scholar
  96. Stevens MI, Hogg ID (2006) The molecular ecology of Antarctic terrestrial and limnetic invertebrates and microbes. In: Bergstrom DM, Convey P, Huiskes AHL (eds) Trends in Antarctic terrestrial and limnetic ecosystems. Springer, NetherlandsGoogle Scholar
  97. Strayer DL, Eviner VT, Jeschke JM, Pace ML (2006) Understanding the long-term effects of species invasions. Trends Ecol Evol 21:645–651PubMedCrossRefGoogle Scholar
  98. Streftaris N, Zenetos A (2006) Alien marine species in the Mediterranean—the 100 ‘Worst Invasives’ and their impact. Medit Mar Sci 7:87–118Google Scholar
  99. Tatchell GM (1989) An estimate of the potential economic losses to some crops due to aphids in Britain. Crop Prot 8:25–29CrossRefGoogle Scholar
  100. Van der Putten N, Verbruggen C, Ochyra R, Verleyen E, Frenot Y (2010) Subantarctic flowering plants: pre-glacial survivors or post-glacial immigrants? J Biogeogr 37:582–592CrossRefGoogle Scholar
  101. Vernon P (1981) Peuplement diptérologique des substrats enrichis en milieu insulaire subantarctique (Îles Crozet): Etude des Sphaeroceridae du genre Anatalanta. Ph.D thesis, Université de Rennes 1, FranceGoogle Scholar
  102. Vernon P, Voisin J (1990) Faune entomologique de la Grande Île des Apôtres (Archipel Crozet, Océan Indien Austral). Bull Soc Entomol Fr 95:263–268Google Scholar
  103. Vernon P, Vannier G, Tréhen P (1998) A comparative approach to the entomological diversity of polar regions. Acta Oecol 19:303–308CrossRefGoogle Scholar
  104. Vogt WG (1988) Influence of weather on trap catches of Chrysomya rufifacies (Macquart) (Diptera: Calliphoridae). J Aust Ent Soc 27:99–103CrossRefGoogle Scholar
  105. Watson KC (1967) The terrestrial arthropoda of Macquarie Island. Australian national Antarctic research expedition reports, Series B, Zoology 99:1–90Google Scholar
  106. Whinam J, Chilcott N, Bergstrom DM (2005) Subantarctic hitchhikers: expeditioners as vectors for the introduction of alien organisms. Biol Conserv 121:207–219CrossRefGoogle Scholar
  107. Williamson M (1996) Biological invasions. Chapman and Hall, LondonGoogle Scholar
  108. Williamson M (1999) Invasions. Ecography 22:5–12CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • M. Lebouvier
    • 1
  • M. Laparie
    • 1
  • M. Hullé
    • 2
  • A. Marais
    • 3
  • Y. Cozic
    • 1
    • 2
  • L. Lalouette
    • 5
  • P. Vernon
    • 1
  • T. Candresse
    • 3
  • Y. Frenot
    • 1
    • 4
  • David Renault
    • 1
    • 6
    Email author
  1. 1.Université de Rennes 1, UMR CNRS 6553 EcobioPaimpontFrance
  2. 2.UMR INRA BiO3PLe Rheu CedexFrance
  3. 3.BFP, UMR 1332, INRA, Université de BordeauxVillenave d’OrnonFrance
  4. 4.Institut Polaire Français Paul-Emile VictorPlouzanéFrance
  5. 5.Université Claude Bernard—Lyon 1, UMR CNRS 5023Villeurbanne CedexFrance
  6. 6.Université de Rennes 1, UMR CNRS 6553 EcobioRennes CedexFrance

Personalised recommendations