Biological Invasions

, Volume 13, Issue 12, pp 2691–2701 | Cite as

Ecological preferences of alien plant species in North-Eastern Germany

  • Florian Jansen
  • Jörg Ewald
  • Stefan Zerbe
Original Paper


The large, comprehensive vegetation database of Mecklenburg-Vorpommern/NE Germany with 51,328 relevés allowed us to study an entire regional flora of 133 non-native plants (NNP, immigration after 1492 AD) with regard to their preferences to all kinds of habitats and along different ecological gradients. For each relevé, we computed average Ellenberg indicator values (EIV) for temperature, light, moisture, reaction, nutrients and salt as well as plant strategy type weights. We partitioned the dataset into relevés with and without occurrences of NNP and compared them with respect to the relative frequencies of EIVs and strategy type weights. We identified deviations from random differences by testing against permuted indicator values. To account for bias in EIV between community types, NNP preferences were differentiated for 34 phytosociological classes. We tested significance of preferences for the group of NNP as a whole, as well as for single NNP species within the entire dataset, as well as differentiated by phytosociological classes and formations. NNP as a group prefer communities with high EIVs for temperature and nutrients and low EIVs for moisture. They avoid communities with low EIV for reaction and high EIV for salt. NNP prefer communities with high proportions of ruderal and low proportion of stress strategists. The differentiation by phytosociological classes reinforces the general trends for temperature, nutrients, moisture, R and S strategy types. Nevertheless, preferences of single species reveal that NNP are not a congruent group but show individualistic ecological preferences.


Co-occurrence Ellenberg indicator values Level of invasion Phytosociological database Vegetation change Succession Strategy types 



Ellenberg indicator value


Native plant


Non native plant

Supplementary material

10530_2011_9939_MOESM1_ESM.pdf (204 kb)
Supplementary material 1 (PDF 204 kb)
10530_2011_9939_MOESM2_ESM.pdf (79 kb)
Supplementary material 2 (PDF 78 kb)
10530_2011_9939_MOESM3_ESM.pdf (46 kb)
Supplementary material 3 (PDF 46 kb)
10530_2011_9939_MOESM4_ESM.pdf (702 kb)
Supplementary material 4 (PDF 701 kb)


  1. Berg C, Dengler J, Abdank A (2001) Die Pflanzengesellschaften Mecklenburg Vorpommerns und ihre Gefährdung-Tabellenband. Weissdorn, JenaGoogle Scholar
  2. Berg C, Dengler J, Abdank A, Isermann M (2004) Die Pflanzengesellschaften Mecklenburg Vorpommerns und ihre Gefährdung-Textband. Weissdorn, JenaGoogle Scholar
  3. Bradley B, Oppenheimer M, Wilcove D (2008) Climate change and plant invasions: restoration opportunities ahead? Glob Chang Biol 15:1511–1521CrossRefGoogle Scholar
  4. Chiarucci A (2007) To sample or not to sample? That is the question…for the vegetation scientist. Folia Geobot 42:209–216CrossRefGoogle Scholar
  5. Chytrý M, Jarosík V, Pysek P, Hájek O, Knollová I, Tichý L, Danihelka J (2008a) Separating habitat invasibility by alien plants from the actual level of invasion. Ecology 89:1541–1553PubMedCrossRefGoogle Scholar
  6. Chytrý M, Maskell LC, Pino J, Pyšek P, Vila M, Font X, Smart SM (2008b) Habitat invasions by alien plants: a quantitative comparison among Mediterranean, subcontinental and oceanic regions of Europe. J Appl Ecol 45:448–458CrossRefGoogle Scholar
  7. Couwenberg J, Joosten JHJ (2001) Bilanzen zum Moorverlust–Das Beispiel Deutschland. In: Succow M, Joosten JHJ (eds) Landschaftsökologische Moorkunde, pp. 409-411Google Scholar
  8. Davis MA, Grime JP, Thompson K (2000) Fluctuating resources in plant communities: a general theory of invasibility. J Ecol 88:528–534CrossRefGoogle Scholar
  9. Davis MA, Perg J, Truscott A, Kollmann J, Bakker J, Domenech R, Prach K, Prieur-Richard A, Veeneklaas R, Pyšek P (2005) Vegetation change: a reunifying concept in plant ecology. Perspect Plant Ecol Evol Syst 7:69–76CrossRefGoogle Scholar
  10. Dengler J, Jansen F, Glöckler F, Peet, RK, De Cáceres M, Chytrý M, Ewal J, Oldeland J, Finckh M, Lopez-Gonzalez, G, Mucina L, Rodwell JS, Schaminée JHJ, Spencer N (2011) The Global Index of Vegetation-Plot Databases (GIVD): a new resource for vegetation science. J Veg Sci 22. doi: 10.1111/j.1654-1103.2011.01265.x
  11. Diekmann M (2003) Species indicator values as an important tool in applied plant ecology—a review. Basic Appl Ecol 6:493–506CrossRefGoogle Scholar
  12. Ellenberg H, Weber HE, Düll R, Wirth V, Werner W, Paulißen D (1992) Zeigerwerte von Pflanzen in Mitteleuropa. Goltze, GöttingenGoogle Scholar
  13. Ertsen ACD, Alkemade JRM, Wassen MJ (1998) Calibrating Ellenberg indicator values for moisture, acidity, nutrient availability and salinity in the Netherlands. Plant Ecol 135:113–124CrossRefGoogle Scholar
  14. Ewald J (2001) Der Beitrag pflanzensoziologischer Datenbanken zur vegetationsökologischen Forschung. Ber Reinh-Tüxen-Ges 13:53–69Google Scholar
  15. Ewald J (2007) Ein pflanzensoziologisches Modell der Schattentoleranz von Baumarten in den Bayerischen Alpen. Forum geobot 3:11–19Google Scholar
  16. Gotelli NJ, McCabe D (2002) Species co-occurrence: A meta-analysis of J. M. Diamond’s assembly rules model. Ecol 83:2091–2096CrossRefGoogle Scholar
  17. Grime JG (1979) Plant strategies and vegetation processes. Wiley, LondonGoogle Scholar
  18. Grime JG, Hodgson JG, Hunt R (1988) Comparative plant ecology—A functional approach to common British species. Hyman, LondonGoogle Scholar
  19. Hejda M, Pyšek P, Pergl J, Sádlo J, Chytrý M, Jarošík V (2009) Invasion success of alien plants: do habitat affinities in the native distribution range matter? Glob Ecol Biogeogr 18:372–382CrossRefGoogle Scholar
  20. Hendel M (2002) Klima. In: Liedke H, Marcinek J (eds) Physische Geographie Deutschlands. Haack, Gotha, pp 14–119Google Scholar
  21. Henker H, Berg C (2006) Flora von Mecklenburg-Vorpommern. Weissdorn, JenaGoogle Scholar
  22. Hollander M, Wolfe DA (1999) Nonparametric Statistical Methods. Wiley, Sons, New YorkGoogle Scholar
  23. Hunt R, Hodgson JG, Thompson K, Bungener P, Dunnett NP, Askew AP (2004) A new practical tool for deriving a functional signature for herbaceous vegetation. Appl Veg Sci 7:163–170CrossRefGoogle Scholar
  24. Jansen F, Dengler J (2008) GermanSL—eine universelle taxonomische Referenzliste für Vegetationsdaten-banken. Tuexenia 28:239–253Google Scholar
  25. Jansen F, Dengler J (2010) Plant names in vegetation databases—a neglected source of bias. J Veg Sc 21:1179–1186CrossRefGoogle Scholar
  26. Jansen F, Zerbe S, Succow M (2009) Changes in landscape naturalness derived from a historical land register—a case study from NE Germany. Landsc Ecol 24:185–198CrossRefGoogle Scholar
  27. Klotz S, Kühn I (2002) Ökologische Strategietypen. Schriftenreihe Veg.kunde 38:197–201Google Scholar
  28. Kowarik I (2010) Biologische Invasionen: Neophyten und Neozoen in Mitteleuropa. 2. ed, Ulmer, StuttgartGoogle Scholar
  29. Kowarik I, Seidling W (1989) Zeigerwertberechnungen nach Ellenberg. Zu Problemen und Einschränkungen einer sinnvollen Methode. Landsch Stadt 21:132–143Google Scholar
  30. Küster EC, Durka W, Kühn I, Klotz S (2009) Differences in the trait compositions of non-indigenous and native plants across Germany. Biol Invasions 12:2001–2012CrossRefGoogle Scholar
  31. Lambdon P, Lloret F, Hulme P (2008) Do alien plants on Mediterranean islands tend to invade different niches from native species? Biol Invasions 10:703–716CrossRefGoogle Scholar
  32. Michalcová D, Lvončík S, Chytrý M, Hájek O (2011) Bias in vegetation databases? A comparison of stratified-random and preferential sampling. J Veg Sci. doi: 10.1111/j.1654-1103.2010.01249.x
  33. Millennium Ecosystem Assessment (2005) Ecosystems and Human Well-being: Biodiversity Synthesis. World Resources Institute, Washington, DCGoogle Scholar
  34. Moles AT, Gruber M, Bonser S (2008) A new framework for predicting invasive plant species. J Ecol 96:13–17Google Scholar
  35. Mühr B (2009) Klimadiagramme. 1. Juni 2007. last accessed: 31.05.2010
  36. Nentwig W (2007) Biological Invasions. Springer, BerlinCrossRefGoogle Scholar
  37. Nentwig W, Ott J, Panov VE, Reineking B, Robinet C, Semenchenko V, Solarz W, Thuiller W, Vilà M, Vohland K, Settele J (2009) Alien species in a warmer world: risks and opportunities. Trends Ecol Evol 24:686–693PubMedCrossRefGoogle Scholar
  38. Perelman SB, Chaneton EJ, Batista WB (2007) Habitat stress, species pool size and biotic resistance influence exotic plant richness in the Flooding Pampa grasslands. J Ecol 95:662–673CrossRefGoogle Scholar
  39. Pyšek P (1993) Factors affecting the diversity of flora and vegetation in central European settlements. Vegetatio 106:89–100CrossRefGoogle Scholar
  40. Pyšek P (1998) Alien and native species in Central European urban floras: a quantitative comparison. J Biogeogr 25:155–163CrossRefGoogle Scholar
  41. Pyšek P, Hulme PE (2009) Invasion biology is a discipline that’s too young to die. Nature 460(7253):324PubMedGoogle Scholar
  42. Pyšek P, Richardson D (2007) Traits associated with invasiveness in alien plants: where do we stand? Ecological Studies 193(3):97–125Google Scholar
  43. Pyšek P, Jarošík V, Chytrý M, Kropáč Z, Tichý L, Wild J (2005) Alien plants in temperate weed communities: prehistoric and recent invaders. Ecology 86:772–785CrossRefGoogle Scholar
  44. Rabitsch W, Essl F (2006) Biological Invasions in Austria: Patterns and Case Studies. Biol Invasions 8:295–308CrossRefGoogle Scholar
  45. Sandlund OT, Schei P, Viken A (1996) Proceedings of the Norway/UN conference on alien species. Directorate for Nature Management and Norwegian Institute for Nature Research, TrondheimGoogle Scholar
  46. Sax DF, Stachowicz JJ, Gaines SD (2005) Species invasions—Insights into ecology, evolution and biogeography. Sinauer, Sunderland, MassachusettsGoogle Scholar
  47. Schaffers AP, Sýkora KV (2000) Reliability of Ellenberg indicator values for moisture, nitrogen and soil reaction: a comparison with field measurements. J Veg Sci 11:225–244CrossRefGoogle Scholar
  48. Schaminée JH, Hennekens SM, Chytrý M, Rodwell JS (2009) Vegetation-plot data and databases in Europe: an overview. Preslia 81:173–185Google Scholar
  49. Schepker H, Kowarik I, Garve E (1997) Verwilderungen nordamerikanischer Kultur-Heidelbeeren (Vaccinium subg. Cyanococcus) in Niedersachsen und deren Einschätzung aus Naturschutzsicht. Natur Landsch 72:346–351Google Scholar
  50. Schmidt R (2002) Böden. In: Liedke H, Marcinek J (eds) Physische Geographie Deutschlands. Haack, Gotha, pp 198–218Google Scholar
  51. Schroeder F (1969) Zur Klassifizierung der Anthropochoren. Vegetatio 16:225–238Google Scholar
  52. R Development Core Team (2009) R: A language and environment for statistical computing. ViennaGoogle Scholar
  53. ter Braak CJF, Gremmen NJM (1987) Ecological amplitudes of plant species and the internal consistency of Ellenberg`s indicator values for moisture. Vegetatio 69:79–87CrossRefGoogle Scholar
  54. Thompson K, Hodgson JG, Rich TC (1995) Native and alien invasive plants: more of the same? Ecography 18:390–402CrossRefGoogle Scholar
  55. Trepl L (1984) Über Impatiens parviflora DC. Agriophyt in Mitteleuropa, Cramer, VaduzGoogle Scholar
  56. Volz H, Otte A (2001) Occurrence and spreading ability of Lupinus polyphyllus Lindl. in the Hochrhoen. In: Kowarik I, Starfinger U (eds) Ziele und Ergebnisse der ersten Berliner NEOBIOTA-Tagung, pp 97–98. BfN, BonnGoogle Scholar
  57. Walther G, Roques A, Hulme PE, Sykes MT, Pyšek P, Kühn I, Zobel M, Bacher S, Botta-Dukát Z, Bugmann H, Czúcz B, Dauber J, Hickler T, Jarosík V, Kenis M, Klotz S, Minchin D, Moora M, Nentwig W, Ott J, Panov VE, Reineking B, Robinet C, Semenchenko V, Solarz W, Thuiller W, Vilà M, Vohland K, Settele J (2009) Alien species in a warmer world: risks and opportunities. Trends Ecol Evol 24:686–693PubMedCrossRefGoogle Scholar
  58. Wamelink GWW, Joosten V, van Dobben HF, Berendse F (2002) Validity of Ellenberg indicator values judged from physico-chemical field measurements. J Veg Sci 13:269–278CrossRefGoogle Scholar
  59. Williamson M (1999) Invasions. Ecography 22:5–12CrossRefGoogle Scholar
  60. Zerbe S, Wirth P (2006) Non-indigenous plant species and their ecological range in Central European pine (Pinus sylvestris L.) forests. Ann For Sci 63:189–203CrossRefGoogle Scholar
  61. Zerbe S, Maurer U, Schmitz S, Sukopp H (2003) Biodiversity in Berlin and its potential for nature conservation. Landscape Urban Plann 62:139–148CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Institute of Botany and Landscape EcologyUniversity of GreifswaldGreifswaldGermany
  2. 2.Faculty of ForestryUniversity of Applied Sciences Weihenstephan-TriesdorfFreisingGermany
  3. 3.Faculty of Science and TechnologyFree University of Bozen–Bolzano, Piazza Università 5BolzanoItaly

Personalised recommendations