Advertisement

Biological Invasions

, Volume 13, Issue 9, pp 2147–2160 | Cite as

Spatial autocorrelation and the analysis of invasion processes from distribution data: a study with the crayfish Procambarus clarkii

  • Matteo Elio Siesa
  • Raoul Manenti
  • Emilio Padoa-Schioppa
  • Fiorenza De Bernardi
  • Gentile Francesco Ficetola
Original Paper

Abstract

Complex spatial dynamics are frequent in invasive species; analyzing distribution patterns can help to understand the mechanisms driving invasions. We used different spatial regression techniques to evaluate processes determining the invasion of the red swamp crayfish Procambarus clarkii. We evaluated four a priori hypotheses on processes that may determine crayfish invasion: landscape alteration, connectivity, wetland suitability for abiotic and biotic features. We assessed the distribution of P. clarkii in 119 waterbodies in a recently invaded area. We used spatially explicit statistical techniques (spatial eigenvector mapping, generalized additive models, Bayesian intrinsic conditional autoregressive models) within an information-theoretic framework to assess the support of hypotheses; we also analyzed the pattern of spatial autocorrelation of data, model residuals, and eigenvectors. We found strong agreement between the results of spatial eigenvector mapping and Bayesian autoregressive models. Procambarus clarkii was significantly associated with the largest, permanent wetlands. Additive models suggested also association with human-dominated landscapes, but tended to overfit data. The results indicate that abiotic wetlands features and landscape alteration are major drivers of the species’ distribution. Species distribution data, residuals of ordinary least squares regression, and spatial eigenvectors all showed positive and significant spatial autocorrelation at distances up to 2,500 m; this may be caused by the dispersal ability of the species. Our analyses help to understand the processes determining the invasion and to identify the areas most at risk where screening and early management efforts can be focused. The comparison of multiple spatial techniques allows a robust assessment of factors determining complex distribution patterns.

Keywords

A priori inference Habitat selection Isolation Landscape composition Spatial autocorrelation 

Notes

Acknowledgments

We thank R. Ferrari, S. Ravani, R. Salvi and M. Valota for help during fieldwork, and B. Schmidt for statistical advices; the LIPU staff of Cesano Maderno, Palude Brabbia and the staff of several protected areas allowed performing research into their territory. M. Foi developed the software to record environmental features in the field. Several local experts helped to identify small, isolated biotopes. This paper is part of the PhD thesis of M. E. Siesa, G. F. Ficetola was funded by a scholarship of University of Milano-Bicocca on invasive species. We thank D. J. Buckley and three anonymous reviewers for comments on early drafts of the manuscript.

References

  1. Albright TP, Anderson DP, Keuler NS, Pearson SM, Turner MG (2009) The spatial legacy of introduction: Celastrus orbiculatus in the southern Appalachians, USA. J Appl Ecol 46:1229–1238Google Scholar
  2. Aquiloni L, Gherardi F (2008) Extended mother-offspring relationships in crayfish: the return behaviour of juvenile Procambarus clarkii. Ethology 114:946–954CrossRefGoogle Scholar
  3. Aquiloni L, Becciolini A, Berti R, Porciani S, Trunfio C, Gherardi F (2009) Managing invasive crayfish: use of X ray sterilisation of males. Freshw Biol 54:1510–1519CrossRefGoogle Scholar
  4. Aquiloni L, Brusconi S, Cecchinelli E, Tricarico E, Mazza G, Paglianti A, Gherardi F (2010) Biological control of invasive populations of crayfish: the European eel (Anguilla anguilla) as a predator of Procambarus clarkii. Biol Invasions 12:3817–3824CrossRefGoogle Scholar
  5. Barbaresi S, Gherardi F (2000) The invasion of the alien crayfish Procambarus clarkii in Europe, with particular reference to Italy. Biol Invasions 2:259–264CrossRefGoogle Scholar
  6. Beale CM, Lennon JJ, Yearsley JM, Brewer MJ, Elston DA (2010) Regression analysis of spatial data. Ecol Lett 13:246–264PubMedCrossRefGoogle Scholar
  7. Berry WD, Feldman S (1985) Multiple regression in practice. Sage, Beverly HillsGoogle Scholar
  8. Bini LM, Diniz-Filho JA, Rangel TFLVB, Akre TSB, Albaladejo RG, Albuquerque FS, Aparicio A, Araujo MB, Baselga A, Beck J, Bellocq MI, Bohning-Gaese K, Borges PAV, Castro-Parga I, Chey VK, Chown SL, de Marco P, Dobkin DS, Ferrer-Castan D, Field R, Filloy J, Fleishman E, Gomez JF, Hortal J, Iverson JB, Kerr JT, Kissling WD, Kitching IJ, Leon-Cortes JL, Lobo JM, Montoya D, Morales-Castilla I, Moreno JC, Oberdorff T, Olalla-Tarraga MA, Pausas JG, Qian H, Rahbek C, Rodriguez MA, Rueda M, Ruggiero A, Sackmann P, Sanders NJ, Terribile LC, Vetaas OR, Hawkins BA (2009) Coefficient shifts in geographical ecology: an empirical evaluation of spatial and non-spatial regression. Ecography 32:193–204CrossRefGoogle Scholar
  9. Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach. Springer, New YorkGoogle Scholar
  10. Capinha C, Leung B, Anastácio P (2011) Predicting worldwide invasiveness for four major problematic decapods: an evaluation of using different calibration sets. Ecography 34:448–459CrossRefGoogle Scholar
  11. Chapman DS, Oxford GS, Dytham C (2009) Process from pattern in the distribution of an endangered leaf beetle. Ecography 32:259–268CrossRefGoogle Scholar
  12. Correia AM, Ferreira O (1995) Burrowing behavior of the introduced red swamp crayfish Procambarus clarkii (Decapoda: Cambaridae) in Portugal. J Crust Biol 15:248–257CrossRefGoogle Scholar
  13. Cruz MJ, Rebelo R (2007) Colonization of freshwater habitats by an introduced crayfish, Procambarus clarkii, in Southwest Iberian Peninsula. Hydrobiologia 575:191–201CrossRefGoogle Scholar
  14. Cruz MJ, Segurado P, Sousa M, Rebelo R (2008) Collapse of the amphibian community of the Paul do Boquilobo Natural Reserve (central Portugal) after the arrival of the exotic American crayfish Procambarus clarkii. Herpetol J 18:197–204Google Scholar
  15. Cushman SA, McGarigal K (2002) Hierarchical, multi-scale decomposition of species-environment relationships. Landsc Ecol 17:637–646CrossRefGoogle Scholar
  16. Cutway HB, Ehrenfeld JG (2009) Exotic plant invasions in forested wetlands: effects of adjacent urban land use type. Urban Ecosyst 12:371–390CrossRefGoogle Scholar
  17. D’Amore A, Hemingway V, Wasson K (2010) Do a threatened native amphibian and its invasive congener differ in response to human alteration of the landscape? Biol Invasions 12:145–154CrossRefGoogle Scholar
  18. Denoël M, Ficetola GF, Cirovic R, Radovic D, Džukic G, Kalezic ML, Vukov TD (2009) A multi-scale approach to facultative paedomorphosis of European newts (Salamandridae) in the Montenegrin karst: distribution pattern, environmental variables, and conservation. Biol Conserv 142:509–517Google Scholar
  19. Didham RK, Tylianakis JM, Gemmell NJ, Rand TA, Ewers RM (2007) Interactive effects of habitat modification and species invasion on native species decline. Trends Ecol Evol 22:489–496PubMedCrossRefGoogle Scholar
  20. Diniz-Filho JAF, Bini LM (2005) Modelling geographical patterns in species richness using eigenvector-based spatial filters. Glob Ecol Biogeogr 14:177–185CrossRefGoogle Scholar
  21. Dormann CF (2007) Effects of incorporating spatial autocorrelation into the analysis of species distribution data. Glob Ecol Biogeogr 16:129–138CrossRefGoogle Scholar
  22. Dormann CF (2009) Response to comment on “Methods to account for spatial autocorrelation in the analysis of species distributional data: a review”. Ecography 32:379–381CrossRefGoogle Scholar
  23. Dormann CF, McPherson JM, Araujo MB, Bivand R, Bolliger J, Carl G, Davies RG, Hirzel A, Jetz W, Kissling WD, Kühn I, Ohlemüller R, Peres-Neto PR, Reineking B, Schröder B, Schurr FM, Wilson R (2007) Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. Ecography 30:609–628CrossRefGoogle Scholar
  24. Dray S, Legendre L, Peres-Neto PR (2006) Spatial modelling: a comprehensive framework for principal coordinate analysis of neighbour matrices (PCNM). Ecol Model 196:483–493CrossRefGoogle Scholar
  25. Fea G, Nardi PA, Ghia D, Spairani M, Manenti R, Rossi S, Moroni M, Bernini F (2006) Dati preliminari sulla distribuzione in Lombardia dei gamberi d’acqua dolce autoctoni e alloctoni. Atti Soc It Sci Nat Mus Civ St Nat Milano 147:201–210Google Scholar
  26. Ficetola GF, De Bernardi F (2004) Amphibians in an human-dominated landscape: the community structure is related to habitat features and isolation. Biol Conserv 119:219–230CrossRefGoogle Scholar
  27. Ficetola GF, Denoël M (2009) Ecological thresholds: an assessment of methods to identify abrupt changes in species-habitat relationships. Ecography 32:1075–1084CrossRefGoogle Scholar
  28. Ficetola GF, Thuiller W, Miaud C (2007) Prediction and validation of the potential global distribution of a problematic alien invasive species—the American bullfrog. Divers Distrib 13:476–485CrossRefGoogle Scholar
  29. Ficetola GF, Padoa-Schioppa E, De Bernardi F (2009) Influence of landscape elements in riparian buffers on the conservation of semiaquatic amphibians. Conserv Biol 23:114–123PubMedCrossRefGoogle Scholar
  30. Ficetola GF, Maiorano L, Falcucci A, Dendoncker N, Boitani L, Padoa-Schioppa E, Miaud C, Thuiller W (2010) Knowing the past to predict the future: land-use change and the distribution of invasive bullfrogs. Glob Change Biol 16:528–537CrossRefGoogle Scholar
  31. Ficetola GF, Siesa ME, Manenti R, Bottoni L, De Bernardi F, Padoa-Schioppa E (2011) Early assessment of the impact of alien species: differential consequences of an invasive crayfish on adult and larval amphibians. Divers Distrib. doi: 10.1111/j.1472-4642.2011.00797.x Google Scholar
  32. Gallien L, Münkemüller T, Albert C, Boulangeat I, Thuiller W (2010) Predicting potential distributions of invasive species: where to go from here? Divers Distrib 16:331–342CrossRefGoogle Scholar
  33. Gherardi F (2006) Crayfish invading Europe: the case study of Procambarus clarkii. Mar Freshw Behav Physiol 39:175–191CrossRefGoogle Scholar
  34. Gherardi F, Panov VE (2009) Procambarus clarkii (Girard), red swamp crayfish/crawfish (Cambaridae, Crustacea) Handbook of alien species in Europe. Springer, Dordrecht, p 316Google Scholar
  35. Gherardi F, Tricarico E, Ilhéu M (2002) Movement patterns of an invasive crayfish, Procambarus clarkii, in a temporary stream of southern Portugal. Ethol Ecol Evol 14:183–197CrossRefGoogle Scholar
  36. Griffith DA, Peres-Neto PR (2006) Spatial modelling in ecology: the flexibility of eigenfunction spatial analyses. Ecology 87:2603–2613PubMedCrossRefGoogle Scholar
  37. Gutiérrez Yurrita PJ, Montes C (1999) Bioenergetics and phenology of reproduction of the introduced red swamp crayfish, Procambarus clarkii, in Donana National Park, Spain, and implications for species management. Freshw Biol 42:561–574CrossRefGoogle Scholar
  38. Hein CL, Vander Zanden MJ, Magnuson JJ (2007) Intensive trapping and increased fish predation cause massive population decline of an invasive crayfish. Freshw Biol 52:1134–1146CrossRefGoogle Scholar
  39. Hines JE (2006) PRESENCE2- Software to estimate patch occupancy and related parameters USGS-PWRC, http://www.mbr-pwrc.usgs.gov/software/presence.html
  40. Hirsch PE (2009) Freshwater crayfish invasions: former crayfish invader Galician crayfish hands title “invasive” over to new invader spiny-cheek crayfish. Biol Invasions 11:515–521CrossRefGoogle Scholar
  41. Hulme PE (2006) Beyond control: wider implications for the management of biological invasions. J Appl Ecol 43:835–847CrossRefGoogle Scholar
  42. Huner JV (1994) Freshwater crayfish culture. In: Huner JV (ed) Freshwater crayfish aquaculture in North America, Europe, and Australia. Food Products Press, Binghamton, pp 5–89Google Scholar
  43. Ilhéu M, Acquistapace P, Benvenuto C, Gherardi F (2003) Shelter use of the Red-Swamp Crayfish (Procambarus clarkii) in dry-season stream pools. Arch Hydrobiol 157:535–546CrossRefGoogle Scholar
  44. Keller RP, Frang K, Lodge DM (2008) Preventing the spread of invasive species: economic benefits of intervention guided by ecological predictions. Conserv Biol 22:80–88PubMedCrossRefGoogle Scholar
  45. Kéry M (2010) Introduction to WinBUGS for ecologists. Academic Press, BurlingtonGoogle Scholar
  46. King JR, Tschinkel WR (2008) Experimental evidence that human impacts drive fire ant invasions and ecological change. Proc Natl Acad Sci USA 105:20339–20343PubMedCrossRefGoogle Scholar
  47. Latimer AM, Wu SS, Gelfand AE, Silander JA (2006) Building statistical models to analyze species distributions. Ecol Appl 16:33–50PubMedCrossRefGoogle Scholar
  48. Legendre P (1993) Spatial autocorrelation: trouble or new paradigm? Ecology 74:1659–1673CrossRefGoogle Scholar
  49. Leprieur F, Beauchard O, Blanchet S, Oberdorff T, Brosse S (2008) Fish invasions in the world’s river systems: when natural processes are blurred by human activities. PLoS Biol 6:404–410Google Scholar
  50. Lukacs PM, Thompson WL, Kendall WL, Gould WR, Doherty PF, Burnham KP, Anderson DR (2007) Concerns regarding a call for pluralism of information theory and hypothesis testing. J Appl Ecol 44:456–460CrossRefGoogle Scholar
  51. MacKenzie DI, Nichols JD, Royle JA, Pollock KH, Bailey LA, Hines JE (2006) Occupancy estimation and modeling: inferring patterns and dynamics of species occurrence. Elsevier, AmsterdamGoogle Scholar
  52. Matsuzaki SS, Usio N, Takamura N, Washitani I (2009) Contrasting impacts of invasive engineers on freshwater ecosystems: an experiment and meta-analysis. Oecologia 158:673–686PubMedCrossRefGoogle Scholar
  53. McIntire EJB, Fajardo A (2009) Beyond description: the active and effective way to infer processes from spatial patterns. Ecology 90:46–56PubMedCrossRefGoogle Scholar
  54. Nagelkerke NJD (1991) A note on a general definition of the coefficient of determination. Biometrika 78:691–692CrossRefGoogle Scholar
  55. Olden JD (2007) Critical threshold effects of benthiscape structure on stream herbivore movement. Phil Trans R Soc B 362:461–472PubMedCrossRefGoogle Scholar
  56. Payette AL, McGaw IJ (2003) Thermoregulatory behavior of the crayfish Procambarus clarki in a burrow environment. Comp Biochem Phys A 136:539–556CrossRefGoogle Scholar
  57. Peres-Neto PR, Legendre P (2010) Estimating and controlling for spatial structure in the study of ecological communities. Glob Ecol Biogeogr 19:174–184CrossRefGoogle Scholar
  58. Pickett STA, Cadenasso ML, Grove JM, Nilon CH, Pouyat RV, Zipperer WC, Costanza R (2001) Urban ecological systems: linking terrestrial ecological, physical, and socioeconomic components of metropolitan areas. Annu Rev Ecol Syst 32:127–157CrossRefGoogle Scholar
  59. Quinn LD, Schooler SS, van Klinken RD (2011) Effects of land use and environment on alien and native macrophytes: lessons from a large-scale survey of Australian rivers. Divers Distrib 17:132–143CrossRefGoogle Scholar
  60. Raffalovich LE, Deane GD, Armstrong D, Tsao HS (2008) Model selection procedures in social research: Monte-Carlo simulation results. J Appl Stat 35:1093–1114CrossRefGoogle Scholar
  61. Rahel FJ (2007) Biogeographic barriers, connectivity and homogenization of freshwater faunas: it’s a small world after all. Freshw Biol 52:696–710CrossRefGoogle Scholar
  62. Rangel TFLVB, Diniz-Filho JAF, Bini LM (2010) SAM: a comprehensive application for Spatial Analysis in Macroecology. Ecography 33:46–50CrossRefGoogle Scholar
  63. Reynolds JD, Demers A, Peay S, Puky P, Sibley P, Souty-Grosset C, Taugbol T (2006) Caryfish conservation and management. In: Souty-Grosset C, Holdich DM, Noel PY, Reynolds JD, Haffner P (eds) Atlas of crayfish in Europe. Pubblications Scientifiques du Muséum national d’Histoire naturelle, Paris, pp 151–157Google Scholar
  64. Richards SA, Whittingham MJ, Stephens PA (2011) Model selection and model averaging in behavioural ecology: the utility of the IT-AIC framework. Behav Ecol Sociobiol 65:77–89CrossRefGoogle Scholar
  65. Romanò C, Riva C (2002) Il gambero di acqua dolce in provincia di Como Provincia di Como, settore risorse ambientali servizio pesca, ComoGoogle Scholar
  66. Sewell D, Beebee TJC, Griffiths RA (2010) Optimising biodiversity assessments by volunteers: the application of occupancy modelling to large-scale amphibian surveys. Biol Conserv 143:2102–2110Google Scholar
  67. Souty-Grosset C, Holdich DM, Noel PY, Reynolds JD, Haffner P (2006) Atlas of crayfish in Europe. Pubblications Scientifiques du Muséum national d’Histoire naturelle, Paris, p 190Google Scholar
  68. Stohlgren TJ, Barnett DT, Flather C, Fuller P, Peterjohn B, Kartesz JT, Master LL (2006) Species richness and pattern of invasion in plants, birds, and fishes in the United States. Biol Invasions 8:427–447CrossRefGoogle Scholar
  69. Strayer DL (2010) Alien species in fresh waters: ecological effects, interactions with other stressors, and prospects for the future. Freshw Biol 55:152–174CrossRefGoogle Scholar
  70. Symonds MRE, Moussalli A (2011) A brief guide to model selection, multimodel inference and model averaging in behavioural ecology using Akaike’s information criterion. Behav Ecol Sociobiol 65:13–21CrossRefGoogle Scholar
  71. Thomas A, O’Hara R, Ligges U, Sturtz S (2006) Making BUGS open. R News 6(1):12–17Google Scholar
  72. Van Buskirk JV (2005) Local and landscape influence on amphibian occurrence and abundance. Ecology 86:1936–1947CrossRefGoogle Scholar
  73. Van Teeffelen AJA, Ovaskainen O (2007) Can the cause of aggregation be inferred from species distributions? Oikos 116:4–16CrossRefGoogle Scholar
  74. Wagner HH, Fortin MJ (2005) Spatial analysis of landscape: concepts and statistics. Ecology 86:1975–1987CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Matteo Elio Siesa
    • 1
  • Raoul Manenti
    • 1
  • Emilio Padoa-Schioppa
    • 2
  • Fiorenza De Bernardi
    • 1
  • Gentile Francesco Ficetola
    • 2
  1. 1.Dipartimento di BiologiaUniversità degli Studi di MilanoMilanItaly
  2. 2.Dipartimento di Scienze dell’Ambiente e del TerritorioUniversità degli Studi di Milano-BicoccaMilanItaly

Personalised recommendations