Biological Invasions

, Volume 13, Issue 7, pp 1533–1541 | Cite as

Can the introduction of Xenopus laevis affect native amphibian populations? Reduction of reproductive occurrence in presence of the invasive species

  • Francesco Lillo
  • Francesco Paolo Faraone
  • Mario Lo Valvo
Original Paper


Biological invasions are regarded as a form of global change and potential cause of biodiversity loss. Xenopus laevis is an anuran amphibian native to sub-Saharan Africa with strong invasive capacity, especially in geographic regions with a Mediterranean climate. In spite of the worldwide diffusion of X. laevis, the effective impact on local ecosystems and native amphibian populations is poorly quantified. A large population of X. laevis occurs in Sicily and our main aim of this work was to assess the consequences of introduction of this alien species on local amphibian populations. In this study we compare the occurrence of reproduction of native amphibians in ponds with and without X. laevis, and before and after the alien colonization. The results of our study shows that, when X. laevis establishes a conspicuous population in a pond system, the populations of Discoglossus pictus, Hyla intermedia and Pelophylax synklepton esculentus show clear signs of distress and the occurrence of reproduction of these native amphibians collapses. In contrast, the populations of Bufo bufo do not appear to be affected by the alien species. Since the Sicilian population of X. laevis shows a strong dispersal capacity, proportionate and quick interventions become necessary to bound the detriment to the Sicilian amphibians populations.


Xenopus laevis Alien invasive species Sicily Amphibians conservation Biological invasion 



We thank to three anonymous referees who contributed helpful comments that strengthened considerably the final version of the manuscript. Special thanks go to all the students and trainees who contributed to the field data collection. We are grateful to all farmers who permitted the scientific activity in private lands and ponds. We thank John J. Borg and Fabrizio Li Vigni for the language revision. This study was financially supported by “MIUR Ex 60% 2007”. The legal permission for this study were allowed by the “Ministero dell’Ambiente e della Tutela del Territorio e del Mare—Direzione Protezione Natura (Prot. DPN-2007-0014605 of 25 May 2007)”.


  1. Beebee TCJ, Griffiths RA (2005) The amphibian decline crisis: a watershed for conservation biology? Biol Conserv 125:275–281CrossRefGoogle Scholar
  2. Casterlin ME, Reynolds WW (1980) Diel activity and thermoregulatory behaviour of a fully aquatic frog: Xenopus laevis. Hydrobiologia 75:189–191CrossRefGoogle Scholar
  3. Collins JP, Storfer A (2003) Global amphibian declines: sorting the hypotheses. Divers Distrib 9:89–98CrossRefGoogle Scholar
  4. Cooney R (2004) The precautionary principle in biodiversity. Conservation and natural resource management: an issues paper for policy-makers, researchers and practitioners. IUCN, Gland CambridgeGoogle Scholar
  5. Courchamp F, Chapuis J, Pascal M (2003) Mammal invaders on island: impact, control and control impact. Biol Rev 78:347–383PubMedCrossRefGoogle Scholar
  6. Crayon JJ (2005) Species account: Xenopus laevis. In: Lannoo MJ (ed) Amphibian declines: the conservation status of United States species, vol 2. University of California Press, Berkeley, pp 522–525Google Scholar
  7. Cruz MJ, Rebelo R, Crespo G (2006) Effects of an introduced crayfish, Procambarus clarkii, on the distribution of south-western Iberian amphibians in their breeding habitats. Ecography 29:329–338CrossRefGoogle Scholar
  8. Eggert C, Foquet A (2006) A preliminary biotelemetric study of a feral invasive Xenopus laevis population in France. Alytes 23:144–149Google Scholar
  9. Elepfandt A (1996a) Sensory perception and the lateral line system in the clawed frog, Xenopus. In: Tinsley RC, Kobel HR (eds) The Biology of Xenopus. Oxford University Press, Oxford, pp 97–116Google Scholar
  10. Elepfandt A (1996b) Underwater acoustics and hearing in the clawed frog, Xenopus. In: Tinsley RC, Kobel HR (eds) The Biology of Xenopus. Oxford University Press, Oxford, pp 177–191Google Scholar
  11. Elepfandt A, Eistetter I, Fleig A, Gunther E, Hainch M, Hepperle S, Traub B (2000) Hearing threshold and frequency discrimination in the purely aquatic frog Xenopus laevis (Pipidae): measurement by means of conditioning. J Exp Biol 203:3621–3629PubMedGoogle Scholar
  12. Faraone FP, Lillo F, Giacalone G, Lo Valvo M (2008a) The large invasive population of Xenopus laevis in Sicily (Italy). Amphibi-Reptil 29:405–412CrossRefGoogle Scholar
  13. Faraone FP, Lillo F, Giacalone G, Lo Valvo M (2008b) Dieta di una popolazione di Xenopo liscio introdotta in Sicilia. In: Corti C. (Ed.), Herpetologia Sardiniae. Societas Herpetologica Italica—Edizioni Belvedere, “le scienze”, Latina, pp 241–246Google Scholar
  14. Fouquet A (2001) Des clandestins aquatiques. Zamenis 6:10–11Google Scholar
  15. Fouquet A, Measey JG (2006) Plotting the course of an African clawed frog invasion in Western France. Anim Biol 56:95–102CrossRefGoogle Scholar
  16. Garner TWJ, Perkins MW, Govindarajulu P, Seglie D, Walker S, Cunningham AA, Fisher MC (2006) The emerging amphibian pathogen Batrachochytrium dendrobatidis globally infects introduced populations of the North American bullfrog, Rana catesbeiana. Biol Lett 2:455–459PubMedCrossRefGoogle Scholar
  17. Gherardi F, Bertolino S, Bodon M, Cesellato S, Cianfanelli S, Ferraguti M, Lori E, Mura G, Nocita A, Riccardi N, Rossetti G, Rota E, Scalera R, Zerunian S, Tricarico E (2008) Animal xenodiversity in Italian inland waters: distribution, modes of arrival, and pathways. Biol Invasions 10:435–454CrossRefGoogle Scholar
  18. Gurdon J (1996) Introductory comments: Xenopus as a laboratory animal. In: Tinsley RC, Kobel HR (eds) The Biology of Xenopus. Oxford University Press, Oxford, pp 3–6Google Scholar
  19. Hartel T, Szilárd N, Cogalniceanu D, Öllerer K, Moga CI, Demeter L (2007) The effect of fish and aquatic habitat complexity on amphibians. Hydrobiologia 583:173–182CrossRefGoogle Scholar
  20. Hecnar SJ, M’Closkey RT (1997) The effects of predatory fish on amphibian species richness and distribution. Biol Conserv 79:123–131CrossRefGoogle Scholar
  21. Holway DA, Lach L, Suarez AV, Tsutsui ND, Case TJ (2002) The causes and the consequences of ant invasions. Annu Rev Eco Syst 33:181–233CrossRefGoogle Scholar
  22. Ihmied YM, Taylor EW (1995) Effect of temperature on surfacing behaviour in Xenopus laevis. J Therm Biol 20:49–53CrossRefGoogle Scholar
  23. Kats LB, Ferrer RP (2003) Alien predators and amphibians decline: review of two decades of science and the transition to conservation. Divers Distrib 9:99–110CrossRefGoogle Scholar
  24. Keller RP, Lodge DM (2007) Species invasions from commerce in live aquatic organisms: problems and possible solutions. Bioscience 57:428–436CrossRefGoogle Scholar
  25. Kolar CS, Lodge DM (2001) Progress in invasion biology: predicting invaders. Trends Ecol Evol 16:199–204PubMedCrossRefGoogle Scholar
  26. Lafferty KD, Page CJ (1997) Predation on the endangered tidewater goby, Eucyclogobius newberry, by the introduced African clawed frog, Xenopus laevis, with notes on the frog’s parasites. Copeia 3:589–592CrossRefGoogle Scholar
  27. Lanza B, Andreone F, Bologna M, Corti C, Razzetti E (2007) Fauna d’Italia Vol XLII, Amphibia. Calderini, BolognaGoogle Scholar
  28. Lillo F, Marrone F, Sicilia A, Castelli G, Zava B (2005) An invasive population of Xenopus laevis (Daudin, 1802) in Italy. Herpetozooa 18:63–64Google Scholar
  29. Lobos G, Jaksic FM (2005) The ongoing invasion of the African clawed frog (Xenopus laevis) in Chile, causes of concern. Biodivers Conserv 14:429–439CrossRefGoogle Scholar
  30. Lobos G, Measey GJ (2002) Invasive population of Xenopus laevis (Daudin) in Chile. Herpetol J 12:163–168Google Scholar
  31. Lőw P, Török J (1998) Prey size selection and food habits of water frogs and moor frogs from Kis-Balaton, Hungary (Anura: Ranidae). Herpetozoa 11:71–78Google Scholar
  32. Measey GJ (1998) Diet of feral Xenopus laevis (Daudin) in South Wales. U.K. J Zool 246:287–298CrossRefGoogle Scholar
  33. Measey GJ (2001) Growth and ageing of feral Xenopus laevis (Daudin) in South Wales, UK. J Zool 254:547–555CrossRefGoogle Scholar
  34. Measey GJ, Tisley RC (1998) Feral Xenopus laevis in South Wales. Herpetol J 8:23–27Google Scholar
  35. Orizaola G, Braña F (2006) Effect of salmonid introduction and other environmental characteristics on amphibian distribution and abundance in mountain lakes of northern Spain. Anim Conserv 9:171–178CrossRefGoogle Scholar
  36. Parker IM, Simberloff D, Lonsdale WM, Goodell K, Wonham M, Kareiva PM, Williamson MH, Von Holle B, Moyle PB, Byers JE, Goldwasser L (1999) Impact: toward a framework for understanding the ecological effects of invaders. Biol invasion 1:3–19CrossRefGoogle Scholar
  37. Pianka ER (1973) The structure of lizard communities. Annu Rev Ecol Syst 4:53–74CrossRefGoogle Scholar
  38. Rebelo R, Amaral P, Bernardes M, Oliveira J, Pinheiro P, Leitao D (2010) Xenopus laevis (Daudin 1802), a new exotic amphibian in Portugal. Biol invasions DOI  10.1007/s10530-010-9757-0
  39. Ricciardi A (2007) Are modern biological invasions an unprecedented form of global change? Biol Conserv 21:329–336CrossRefGoogle Scholar
  40. Ricciardi A, Cohen J (2007) The invasiveness of an introduced species does not predict its impact. Biol Invasions 9:309–315CrossRefGoogle Scholar
  41. Sala OE, Chapin FS, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Huber-Sanwald E, Huenneke LF, Jackson RB, Kinzig A, Leemans R, Lodge DM, Mooney HA, Oesterheld M, Poff NL, Sykes MT, Walker BH, Walker M, Wall DH (2000) Biodiversity: global biodiversity scenarios for the year 2100. Science 287:1770–1774PubMedCrossRefGoogle Scholar
  42. Sas I, Kovács ÉH, Covaciu-Marcov SD, Strugariu A, Covaci R, Ferenţi S (2007) Food habits of a Pool frog Pelophylax lessonae—Edible frog Pelophylax kl. esculentus population from North-Western Romania. Biota 8:71–78Google Scholar
  43. Savage JA (1987) Extinction of an island forest avifauna by an introduced snake. Ecology 68:660–668CrossRefGoogle Scholar
  44. Scott NJ, Woodward BD (1994) Surveys at breeding sites. In: Heyer WR, Donnelly MA, McDiarmid RW, Hayek LA, Foster MS (eds) Measuring and monitoring biological diversity, standard methods for amphibians. Smithsonian Institution Press, Washington, pp 183–205Google Scholar
  45. Sicilia A, Lillo F, Zava B, Bernini F (2006) Breeding phenology of Bufo viridis Laurenti, 1768 in Sicily. Acta Herpetol 1:107–117Google Scholar
  46. Solé M, Beckmann O, Pelz B, Kwet A, Engels W (2005) Stomach-flushing for diet analysis in anurans: an improved protocol evaluated in a case study in Araucaria forests, southern Brazil. Stud Neotrop Fauna Environ 40:23–28CrossRefGoogle Scholar
  47. Tinsley RC, McCoid MJ (1996) Feral Population of Xenopus outside Africa. In: Tinsley RC, Kobel HR (eds) The Biology of Xenopus. Oxford University Press, Oxford, pp 81–94Google Scholar
  48. Tinsley RC, Loumont C, Kobel HR (1996) Geographical distribution and ecology. In: Tinsley RC, Kobel HR (eds) The Biology of Xenopus. Oxford University Press, Oxford, pp 35–59Google Scholar
  49. Videler JJ, Jorna JT (1985) Functions of the sliding pelvis in Xenopus laevis. Copeia 1:254–257Google Scholar
  50. Weldon C, Du Preez LH, Hyatt AD, Muller R, Speare R (2004) Origin of the amphibian Chytrid Fungus. Emerg Infect Dis 12:2100–2105Google Scholar
  51. Weldon C, De Villiers AL, Du Preez LH (2007) Quantification of the trade in Xenopus laevis from South Africa, with implications for biodiversity conservation. Afr J Herpetol 56:77–83CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Francesco Lillo
    • 1
  • Francesco Paolo Faraone
    • 1
  • Mario Lo Valvo
    • 1
  1. 1.Dipartimento di Biologia Animale “G. Reverberi”Università di PalermoPalermoItaly

Personalised recommendations