Biological Invasions

, Volume 13, Issue 4, pp 1003–1019 | Cite as

The invasive Australian redback spider, Latrodectus hasseltii Thorell 1870 (Araneae: Theridiidae): current and potential distributions, and likely impacts

  • Cor J. VinkEmail author
  • José G. B. Derraik
  • Craig B. Phillips
  • Phil J. Sirvid
Original Paper


Populations of the Australian redback spider, Latrodectus hasseltii Thorell 1870, were first recorded in New Zealand in the early 1980s and in Osaka, Japan in 1995. Reliable records suggest that naturalised populations of L. hasseltii in New Zealand are present only in Central Otago and New Plymouth. In Central Otago, L. hasseltii feeds on endangered invertebrates, such as Prodontria modesta (Broun 1909). Latrodectus hasseltii is also a hazard to the New Zealand endemic L. katipo through interbreeding and competitive displacement. CLIMEXTM was used to model the potential global distribution of L. hasseltii based on current climate, and using ArcGIS® 9.2, areas of suitable climate in New Zealand were overlaid with favourable habitats to identify areas most suitable for L. hasseltii establishment. In addition, shelter that urban areas offer L. hasseltii were modelled in CLIMEX and incorporated into ArcGIS to produce maps indicating cities and built up areas where the species could establish. The presence of L. hasseltii in New Zealand and Japan, and its possible spread to other areas, is of human health significance, and the species may also impact on native biodiversity.


CLIMEX GIS Human health Invasive species Biodiversity threat 



We dedicate this paper to the late Lyn Forster (see Vink et al. 2009) whose research on L. hasseltii has been informative and inspirational. We thank Darren Kriticos and Gunter Maywald for their specialist advice on CLIMEX. Virtual Climate Station data was supplied by the National Institute of Water and Atmospheric Research, New Zealand ( and John Kean (AgResearch) provided invaluable assistance in loading the data into CLIMEX as well as helpful comments on the manuscript. Thanks to Mandy Barron for help with calculating the eggsac temperature threshold for L. hasseltii; Cody Fraser (OMNZ) for the loan of specimens; Craig Wilson (Department of Conservation) and Ruud Kleinpaste for L. hasseltii specimens and locality data from Central Otago; and Barbara Barratt (AgResearch) for confirming the identifications of Prodontria modesta and L. hasseltii locality data from Central Otago. We are grateful to Andrew Evans, Robyn Parker and David Parker for their assistance with field work, and to the latter for allowing live redbacks to be stored in his fridge. Thanks to Matthew Brown (AgResearch) for assistance with ArcGIS. Robert Raven (Queensland Museum) provided early information and advice. Alan Flynn (MAFBNZ) and Grace Hall (NZAC) have also provided valuable assistance and feedback. Thanks also to Brian Patrick (Central Stories Museum, Alexandra); John Early (AMNZ); Mike Langford (Ministry of Health); Peter de Lange (Department of Conservation); Eddie McCutcheon; Andy Austin (University of Adelaide); Nikolaj Scharff (Natural History Museum of Denmark); and Sandy Toy, Simon O’Connor, Toni Tana, Shaun Bennett, Carol Muir, Jo Berry and Carolyn Whyte (MAFBNZ) for input. We thank Daniel Simberloff (University of Tennessee) and Jeremy Miller (Nationaal Natuurhistorisch Museum Naturalis) for valuable comments on a previous version of the manuscript. CJV and CBP were partially funded by New Zealand’s Foundation for Research, Science and Technology through contract C02X0501, the Better Border Biosecurity (B3) programme (


  1. Andrewartha HG, Birch LC (1984) The ecological web: more on the distribution and abundance of animals. University of Chicago Press, Chicago, p 520Google Scholar
  2. Austin AD (1985) The function of spider eggsacs in relation to parasitoids and predators, with special reference to the Australian fauna. J Nat Hist 19:359–376CrossRefGoogle Scholar
  3. Barratt BIP (2007) Conservation status of Prodontria (Coleoptera: Scarabaeidae) species in New Zealand. J Insect Conserv 11:19–27CrossRefGoogle Scholar
  4. Beatty JA, Berry JW, Berry ER (2000) Additions and corrections to the spider fauna of Hawaii. Bishop Mus Occas Pap 68:32–39Google Scholar
  5. Bednarski J, Ginsberg H, Jakob EM (2010) Competitive interactions between a native spider (Frontinella communis, Araneae: Linyphiidae) and an invasive spider (Linyphia triangularis, Araneae: Linyphiidae). Biol Invasions 12:905–912CrossRefGoogle Scholar
  6. Biosecurity New Zealand (2007) Import risk analysis: vehicle and machinery. p 364, Ministry of Agriculture and Forestry, WellingtonGoogle Scholar
  7. Blick T, Bosmans R, Buchar J, Gajdoš P, Hänggi A, Van Helsdingen PJ, Ružicka V, Starega W, Thaler K (2004) Checkliste der Spinnen Mitteleuropas. Checklist of the spiders of Central Europe. (Arachnida: Araneae). Version 1.
  8. Bomford M, Kraus F, Barry SC, Lawrence E (2009) Predicting establishment success for alien reptiles and amphibians: a role for climate matching. Biol Invasions 11:713–724CrossRefGoogle Scholar
  9. Bouček Z (1988) Australasian Chalcidoidea (Hymenoptera). A biosystematic revision of genera of fourteen families, with a reclassification of species. CAB International, London, p 832Google Scholar
  10. Brambila J, Evans GA (2001) Hymenopteran parasitoids associated with spiders in Florida. Insecta Mundi 15:18Google Scholar
  11. Brown KS, Necaise JS, Goddard J (2009) Additions to the known US distribution of Latrodectus geometricus (Araneae: Theridiidae). J Med Entomol 45:959–962Google Scholar
  12. Bureau of meteorology (2003) average annual rainfall.
  13. Campbell A, Frazer BD, Gilbert N, Gutierrez AP, Mackauer M (1974) Temperature requirements of some aphids and their parasites. J Appl Ecol 11:431–438CrossRefGoogle Scholar
  14. Cariaso BL (1967) Biology of the black widow spider, Latrodectus hasselti, Thorell (Araneae: Theridiidae). Philippine Agriculturist 51:171–180Google Scholar
  15. Chrysanthus P (1975) Further notes on the spiders of New Guinea II (Araneae, Tetragnathidae, Theridiidae). Zool Verh (Leiden) 140:1–50Google Scholar
  16. Crosby TK, Dugdale JS, Watt JC (1998) Area codes for recording specimen localities in the New Zealand subregion. N Z J Zool 25:175–183Google Scholar
  17. Derraik JGB, Sirvid PJ, Vink CJ, Hall G (2008) White-tail tales. N Z Med J 121:84–86PubMedGoogle Scholar
  18. Downes MF (1984) Egg sac ‘theft’ among Latrodectus hasselti females (Araneae, Theridiidae). J Arachnol 12:244Google Scholar
  19. Downes MF (1987) Postembryonic development of Latrodectus hasselti Thorell (Araneae, Theridiidae). J Arachnol 14:293–301Google Scholar
  20. Elith J, Leathwick JR (2009) Species distribution models: ecological explanation and prediction across space and time. Ann Rev Ecol Evol Syst 40:677–697CrossRefGoogle Scholar
  21. Elith J, Graham CH, Anderson RP, Dudík M, Ferrier S, Guisan A, Hijmans RJ, Huettmann F, Leathwick JR, Lehmann A, Li J, Lohmann LG, Loiselle BA, Manion G, Moritz C, Nakamura M, Nakazawa Y, Overton JM, Peterson AT, Phillips SJ, Richardson K, Scachetti-Pereira R, Schapire RE, Soberón J, Williams S, Wisz MS, Zimmermann NE (2006) Novel methods improve prediction of species distributions from occurrence data. Ecography 29:129–151CrossRefGoogle Scholar
  22. Emerson BC, Barratt BIP (1997) Descriptions of seven new species of the genus Prodontria Broun (Coleoptera: Scarabaeidae: Melolonthinae). Coleopt Bull 51:23–36Google Scholar
  23. Emerson BC, Wallis GP (1995) Phylogenetic relationships of the Prodontria (Coleoptera; Scarabaeidae; subfamily Melolonthinae), derived from sequence variation in the mitochondrial cytochrome oxidase II gene. Mol Phylogenet Evol 4:433–447PubMedCrossRefGoogle Scholar
  24. Forster LM (1982) The Australian redback spider—an unwelcome immigrant to New Zealand. Weta 5:35Google Scholar
  25. Forster LM (1984) The Australian redback spider (Latrodectus hasselti): its introduction and potential for establishment and distribution in New Zealand. In: Laird M (ed) Commerce and the spread of pests and disease vectors. Praeger Publishers, NY, pp 273–289Google Scholar
  26. Forster LM (1985) Is the redback spider here to stay? N Z J Agriculture 150:58–59Google Scholar
  27. Forster LM (1992) The stereotyped behaviour of sexual cannibalism in Latrodectus hasselti Thorell (Araneae: Theridiidae), the Australian redback spider. Aust J Zool 40:1–11CrossRefGoogle Scholar
  28. Forster LM (1995) The behavioural ecology of Latrodectus hasselti (Thorell), the Australian redback spider (Araneae: Theridiidae): a review. Rec West Aust Mus Suppl 52:13–24Google Scholar
  29. Forster RR, Forster LM (1999) Spiders of New Zealand and their worldwide kin. Otago University Press, Dunedin, p 270Google Scholar
  30. Forster LM, Kavale J (1989) Effects of food deprivation on Latrodectus hasselti Thorell (Araneae: Theridiidae), the Australian redback spider. N Z J Zool 16:401–408Google Scholar
  31. Framenau VW, Vink CJ (2001) Revision of the wolf spider genus Venatrix Roewer (Araneae: Lycosidae). Invertebr Taxon 15:927–970CrossRefGoogle Scholar
  32. Fullaway DT (1953) Three new species of Eurytoma (Hymenoptera: Eurytomidae). Proc Hawaii Entomol Soc 15:33–36Google Scholar
  33. Garb JE, González A, Gillespie RG (2004) The black widow spider genus Latrodectus (Araneae: Theridiidae): phylogeny, biogeography, and invasion history. Mol Phylogenet Evol 31:1127–1142PubMedCrossRefGoogle Scholar
  34. Greenstone MH, Morgan CE, Hultsch A-L, Farrow RA, Dowse JE (1987) Ballooning spiders in Missouri, USA, and New South Wales, Australia: family and mass distributions. J Arachnol 15:163–170Google Scholar
  35. Griffiths JW, Paterson AM, Vink CJ (2005) Molecular insights into the biogeography and species status of New Zealand’s endemic Latrodectus spider species; L. katipo and L. atritus. J Arachnol 33:776–784CrossRefGoogle Scholar
  36. Hann SW (1990) Evidence for the displacement of an endemic New Zealand spider, Latrodectus katipo Powell by the South African species Steatoda capensis Hann (Araneae: Theridiidae). N Z J Zool 17:295–308Google Scholar
  37. Hayes K, Barry S (2008) Are there any consistent predictors of invasion success? Biol Invasions 10:483–506CrossRefGoogle Scholar
  38. Hennessy K, Fitzharris B, Bates BC, Harvey N, Howden SM, Hughes L, Salinger J, Warrick R (2007) Australia and New Zealand. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) Climate change 2007: impacts, adaptation and vulnerability. contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 507–540Google Scholar
  39. Hickman VV (1967) Some common spiders of Tasmania. Tasmanian Museum and Art Gallery, Tasmania, p 112Google Scholar
  40. Hitchmough R, Bull L, Cromarty P (2007) New Zealand threat classification system lists 2005. Department of Conservation, Wellington, p 194Google Scholar
  41. Hulme PE (2003) Biological invasions: winning the science battles but losing the conservation war? Oryx 37:178–193CrossRefGoogle Scholar
  42. Isbister GK, Gray MR (2003) Latrodectism: a prospective cohort study of bites by formally identified redback spiders. Med J Aust 179:88–91PubMedGoogle Scholar
  43. Kamimura K, Yoshida M, Nishio Y, Matsuse IT, Shimano S, Shirai Y (1999) Overwintering of Latrodectus hasseltii in shelter traps in Osaka prefecture. Med Entomol Zool 50:137–140Google Scholar
  44. Kavale J (1986) The Comparative biology of two Latrodectus species. Master of science thesis, University of Otago, Dunedin, 121 pGoogle Scholar
  45. Kobelt M, Nentwig W (2008) Alien spider introductions to Europe supported by global trade. Divers Distrib 14:273–280CrossRefGoogle Scholar
  46. Kriticos DJ, Sutherst RW, Brown JR, Adkins SW, Maywald GF (2003) Climate change and the potential distribution of an invasive alien plant: Acacia nilotica ssp. indica in Australia. J Appl Ecol 40:111–124CrossRefGoogle Scholar
  47. Lettink M, Patrick BH (2006) Use of artificial cover objects for detecting red katipo, Latrodectus katipo Powell (Araneae: Theridiidae). N Z Entomol 29:99–102Google Scholar
  48. Levi HW (1959) The spider genus Latrodectus (Araneae, Theridiidae). Trans Amer Microsc Soc 78:7–43CrossRefGoogle Scholar
  49. Levy G, Amitai P (1983) Revision of the widow-spider genus Latrodectus (Araneae: Theridiidae) in Israel. Zool J Linn Soc 71:39–63CrossRefGoogle Scholar
  50. Lotfalizadeh H, Delvare G, Rasplus J-Y (2007) Phylogenetic analysis of Eurytominae (Chalcidoidea: Eurytomidae) based on morphological characters. Zool J Linn Soc 151:441–510CrossRefGoogle Scholar
  51. Main BY (1993) Redbacks may be dinky-di after all: an early record from South Australia. Australas Arachnol 46:3–4Google Scholar
  52. Manju S, Kumar D (2001) Rare sighting of poisonous spider Latrodectus hasseltii indicus Simon (Araneae: Theridiidae) in a cotton field in Baroda district, Gujarat. Curr Sci 81:1170–1171Google Scholar
  53. Matsuse IT, Kamimura K, Yoshida M (1999) The tolerance of Latrodectus hasseltii (Araneae: Theridiidae) to low temperatures. Med Entomol Zool 50:71–73Google Scholar
  54. McCutcheon ER (1992) Two species of katipo spiders. Weta 15:1–2Google Scholar
  55. McKeown KC (1952) Australian spiders: their lives and habits. Angus and Robertson, Sydney, p 274Google Scholar
  56. McNeill MR, Vink CJ, Phillips CB (2009) Surveillance for weevils and cobweb spiders at high risk sites around Christchurch, New Zealand. N Z Plant Prot 62:124–129Google Scholar
  57. Mead HJ, Jelinek GA (1993) Red-back spider bites to Perth children, 1979–1988. J Pediatr Child Health 29:305–308CrossRefGoogle Scholar
  58. Ministry for the Environment (2004) New Zealand land cover database 2. User Guide. p 24, Ministry for the environment, WellingtonGoogle Scholar
  59. Nihei N, Yoshida M, Kobayashi M, Kaneta H, Shimamura R, Agui N (2003) Geographic information systems (GIS) analysis of the distribution of the redback spider Latrodectus hasseltii (Araneae: Theridiidae) in Osaka, Japan. Med Entomol Zool 54:177–186Google Scholar
  60. Nihei N, Yoshida M, Kaneta H, Shimamura R, Kobayashi M (2004) Analysis on the dispersal pattern of newly introduced Latrodectus hasseltii (Araneae: Theridiadae [sic]) in Japan by spider diagram. J Med Entomol 41:269–276PubMedCrossRefGoogle Scholar
  61. Nyffeler M, Dondale CD, Redner JH (1986) Evidence for displacement of a North American spider, Steatoda borealis (Hentz), by the European species S. bipunctata (Linnaeus) (Araneae: Theridiidae). Can J Zool 64:867–874CrossRefGoogle Scholar
  62. Ono H (1995) Records of Latrodectus geometricus (Araneae: Theridiidae) from Japan. Acta Arachnol 44:167–170CrossRefGoogle Scholar
  63. Orange P (2007) Predation on lizards by the red-back spider, Latrodectus hasselti. Herpetofauna 37:32–35Google Scholar
  64. Ori M, Shinkai E, Ikeda H (1996) Introduction of widow spiders into Japan. Med Entomol Zool 47:111–119Google Scholar
  65. Paquette V, Lévesque J, Mensour B, Leroux J-M, Beaudoin G, Bourgouin P, Beauregard M (2003) “Change the mind and you change the brain”: effects of cognitive-behavioral therapy on the neural correlates of spider phobia. Neuroimage 18:401–409PubMedCrossRefGoogle Scholar
  66. Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Ann Rev Ecol Evol Syst 37:637–669CrossRefGoogle Scholar
  67. Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) (2007) climate change 2007: impacts, adaptation and vulnerability. Contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change, Cambridge University Press, Cambridge, 976 ppGoogle Scholar
  68. Patel BH (1973) Some interesting theridiid spiders (Araneae: Theridiidae) from Gujarat, India. Bull Brit Arachnol Soc 2:149–152Google Scholar
  69. Patrick BH (2002) Conservation status of the New Zealand red katipo spider (Latrodectus katipo Powell, 1871). Sci Conserv 194:1–33Google Scholar
  70. Platnick NI (2010) The World spider catalog, version 10.5.
  71. Poutsma J, Loomans A, Aukema B, Heijerman T (2008) Predicting the potential geographical distribution of the harlequin ladybird, Harmonia axyridis, using the CLIMEX model. Biocontrol 53:103–125CrossRefGoogle Scholar
  72. Raven RJ (1990) Spider predators of reptiles and amphibia. M Qld Mus 29:448Google Scholar
  73. Raven RJ (1992) Redback spiders, black widows and their kin. News Bull Entomol Soc Queensland 20:4–8Google Scholar
  74. Raven RJ, Gallon JA (1987) The redback spider. In: Covacevich J, Davie P, Pearns J (eds) Toxic plants and animals a guide for Australia. Queensland Museum, Brisbane, pp 307–311Google Scholar
  75. Reed C, Newland S (2002) Pest risk assessment for spiders associated with table grapes from United States of America (State of California), Australia Mexico and Chile. p 92, Ministry of Agriculture and Forestry, WellingtonGoogle Scholar
  76. Rhymer JM, Simberloff D (2003) Extinction by hybridization and introgression. Annu Rev Ecol Syst 27:83–109CrossRefGoogle Scholar
  77. Samways MJ (2003) Critical response from Professor Michael J Samways. J Biogeogr 30:817CrossRefGoogle Scholar
  78. Samways MJ, Osborn R, Hastings H, Hattingh V (1999) Global climate change and accuracy of prediction of species’ geographical ranges: establishment success of introduced ladybirds (Coccinellidae, Chilocorus spp.) worldwide. J Biogeogr 26:795–812CrossRefGoogle Scholar
  79. Sexton JP, McIntyre PJ, Angert AL, Rice KJ (2009) Evolution and ecology of species range limits. Ann Rev Ecol Evol Syst 40:415–436CrossRefGoogle Scholar
  80. Slaughter RJ, Beasley DMG, Lambie BS, Schep LJ (2009) New Zealand’s venomous creatures. N Z Med J 122:83–97PubMedGoogle Scholar
  81. Snyder WE, Evans EW (2006) Ecological effects of invasive arthropod generalist predators. Ann Rev Ecol Evol Syst 37:95–122CrossRefGoogle Scholar
  82. Statistics New Zealand (2009)
  83. Stephens AEA, Kriticos DJ, Leriche A (2007) The current and future potential geographical distribution of the oriental fruit fly, Bactrocera dorsalis (Diptera: Tephritidae). Bull Entomol Res 97:369–378PubMedCrossRefGoogle Scholar
  84. Sutherland SK (1983) Spider bites in Australia. There are still some mysteries. Med J Aust 2:597PubMedGoogle Scholar
  85. Sutherland SK (2001) Australian animal toxins: the creatures, their toxins and care of the poisoned patient. Oxford University Press, Melbourne, p 856Google Scholar
  86. Sutherst RW, Bourne AS (2009) Modelling non-equilibrium distributions of invasive species: a tale of two modelling paradigms. Biol Invasions 11:1231–1237CrossRefGoogle Scholar
  87. Sutherst RW, Maywald GF (1985) A computerised system for matching climates in ecology. Agric Ecosyst Environ 13:281–299CrossRefGoogle Scholar
  88. Sutherst RW, Maywald GF (2005) A climate model of the red imported fire ant, Solenopsis invicta Buren (Hymenoptera: Formicidae): Implications for invasion of new regions, particularly Oceania. Environ Entomol 34:317–335CrossRefGoogle Scholar
  89. Sutherst RW, Maywald GF, Bourne A (2007a) Including species interactions in risk assessments for global change. Global Change Biol 13:1–17CrossRefGoogle Scholar
  90. Sutherst RW, Maywald GF, Kriticos DJ (2007b) CLIMEX version 3. CD and User’s Guide. Hearne Scientific Software, MelbourneGoogle Scholar
  91. Tait A, Henderson R, Turner R, Zheng Z (2006) Thin plate smoothing interpolation of daily rainfall for New Zealand using a climatological rainfall surface. Int J Climatol 26:2097–2115CrossRefGoogle Scholar
  92. Tanaka K (2001) Supercooling ability in the house spider, Achaearanea tepidariorum: effect of field-collected and laboratory-reared prey. Naturwissenschaften 88:431–433PubMedCrossRefGoogle Scholar
  93. Vincent LS, Vetter RS, Wrenn WJ, Kempf JK, Berrian JE (2009) The brown widow spider Latrodectus geometricus C. L. Koch,in 1841, in southern California. Pan-Pac Entomol 84:344–349CrossRefGoogle Scholar
  94. Vink CJ, Sirvid PJ (2000) New synonymy between Oxyopes gracilipes (White) and Oxyopes mundulus L. Koch (Oxyopidae: Araneae). Mem Qld Mus 45:637–640Google Scholar
  95. Vink CJ, Evans AM, Phillips CB, Murdoch TC, Tubbs MB (2003) Molecular phylogenetic analysis supports the synonymy of Prodontria modesta (Broun) and Prodontria bicolorata Given (Coleoptera: Scarabaeidae: Melolonthinae). J Insect Conserv 7:215–221CrossRefGoogle Scholar
  96. Vink CJ, Sirvid PJ, Malumbres-Olarte J, Griffiths JW, Paquin P, Paterson AM (2008) Species status and conservation issues of New Zealand’s endemic Latrodectus spider species (Araneae: Theridiidae). Invertebr Syst 22:589–604CrossRefGoogle Scholar
  97. Vink CJ, Sirvid PJ, Hall G (2009) Obituary: Dr Lyndsay McLaren Forster: 1925–2009. N Z Entomol 32:95–97Google Scholar
  98. Waterworth K (2009) Invasion of the man-eating spider. The Press, p D6, ChristchurchGoogle Scholar
  99. Wharton TN, Kriticos DJ (2004) The fundamental and realized niche of the Monterey Pine aphid, Essigella californica (Essig) (Hemiptera: Aphididae): implications for managing softwood plantations in Australia. Divers Distrib 10:253–262CrossRefGoogle Scholar
  100. Woodward FI (1987) Climate and plant distribution. Cambridge University Press, Cambridge, p 190Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Cor J. Vink
    • 1
    • 2
    Email author
  • José G. B. Derraik
    • 3
    • 5
  • Craig B. Phillips
    • 1
  • Phil J. Sirvid
    • 4
  1. 1.Biosecurity Group, AgResearchChristchurchNew Zealand
  2. 2.Entomology Research MuseumLincoln UniversityLincolnNew Zealand
  3. 3.MAF Biosecurity New ZealandWellingtonNew Zealand
  4. 4.Entomology SectionMuseum of New Zealand Te Papa TongarewaWellingtonNew Zealand
  5. 5.Disease and Vector Research Group, Institute for Natural SciencesMassey UniversityAucklandNew Zealand

Personalised recommendations