Advertisement

Biological Invasions

, Volume 12, Issue 12, pp 4003–4018 | Cite as

The role of bioclimatic origin, residence time and habitat context in shaping non-native plant distributions along an altitudinal gradient

  • Sylvia HaiderEmail author
  • Jake Alexander
  • Hansjörg Dietz
  • Ludwig Trepl
  • Peter J. Edwards
  • Christoph Kueffer
Original Paper

Abstract

An important factor influencing whether or not a non-native plant species becomes invasive is the climate in the area of introduction. To become naturalised in the new range, a species must either be climatically pre-adapted (climate matching), have a high phenotypic plasticity, or be able to adapt genetically, which in the latter case may take many generations. Furthermore, patterns of successful establishment across species might vary with habitat context. To address the interaction of these factors on non-native species richness, we recorded the presence of non-native annual plant species along an altitudinal gradient on Tenerife (Canary Islands, Spain). We compared the distributions of species differing in bioclimatic origin (Mediterranean and temperate) and time since introduction (old and recent introductions), and compared richness patterns of these groups in anthropogenic and natural habitats. Non-native species richness increased strongly from lowlands to mid-altitudes, but dropped sharply at the transition from anthropogenic to natural habitats, and thereafter declined with altitude in the natural habitat. This pattern indicates that the altitude effects reflected changes in both climate and habitat context. Mediterranean and temperate species were distributed similarly along the altitudinal gradient, and we found no effect of bioclimatic origin on species distributions. As almost all species present at the highest sites also occurred in the lowlands, we conclude that most species were introduced to lowland sites and were therefore pre-adapted to those climatic conditions (lowland introduction filter). The altitudinal ranges of species tended to increase with time since introduction, and the species reaching the highest altitudes were mostly old introductions. This effect of time was more pronounced among Mediterranean than temperate species. Thus, while climatic pre-adaptation is important for establishment along this altitudinal gradient, species tend to extend their altitudinal range with time.

Keywords

Alien species Climate matching Mountain Lowland introduction filter Plant invasion Roadside vegetation 

Notes

Acknowledgments

We thank José María Fernández-Palacios, José Ramon Arévalo and Rüdiger Otto (Universidad de La Laguna, Tenerife, Spain) for enabling the field work, helping with species identification and sharing many facilities of the department. Werner Nezadal (University of Erlangen-Nürnberg, Germany) gave support in the decision about the introduction status of the species. The manuscript was improved by comments from Aníbal Pauchard (Universidad de Concepción, Chile) and two anonymous reviewers. SH was funded by a graduate scholarship from Universität Bayern e.V.

References

  1. Alexander JM and Edwards PJ (2010) Limits to the niche and range margins of alien species. Oikos (in press). doi  10.1111/j.1600-0706.2010.17977.x
  2. Alexander JM, Edwards PJ, Poll M, Parks CG, Dietz H (2009a) Establishment of parallel altitudinal clines in traits of native and introduced forbs. Ecology 90:612–622. doi: 10.1890/08-0453.1 PubMedCrossRefGoogle Scholar
  3. Alexander JM, Naylor B, Poll M, Edwards PJ, Dietz H (2009b) Plant invasions along mountain roads: the altitudinal amplitude of alien Asteraceae forbs in their native and introduced ranges. Ecography 32:334–344. doi: 10.1111/j.1600-0587.2008.05605.x CrossRefGoogle Scholar
  4. Almeida-Neto M, Guimarães P, Guimarães PR Jr, Loyola RD, Ulrich W (2008) A consistent metric for nestedness analysis in ecological systems: reconciling concept and measurement. Oikos 117:1227–1239. doi: 10.1111/j.2008.0030-1299.16644.x CrossRefGoogle Scholar
  5. Alpert P, Bone E, Holzapfel C (2000) Invasiveness, invasibility and the role of environmental stress in the spread of non-native plants. Perspect Plant Ecol Evol Syst 3:52–66. doi: 10.1078/1433-8319-00004 CrossRefGoogle Scholar
  6. Arévalo JR, Delgado JD, Otto R, Naranjo A, Salas M, Fernández-Palacios JM (2005) Distribution of alien vs native plant species in roadside communities along an altitudinal gradient in Tenerife and Gran Canaria (Canary Islands). Perspect Plant Ecol Evol Syst 7:185–202. doi: 10.1016/j.ppees.2005.09.003 CrossRefGoogle Scholar
  7. Arévalo JR, Peraza MD, Àlvarez C, Bermúdez A, Delgado JD, Gallardo A, Fernández-Palacios JM (2008) Laurel forest recovery during 20 years in an abandoned firebreak in Tenerife, Canary Islands. Acta Oecologica 33:1–9. doi: 10.1016/j.actao.2007.06.005 CrossRefGoogle Scholar
  8. Arévalo JR, Otto R, Escudero C, Fernández-Lugo S, Arteaga M, Delgado JD, Fernández-Palacios JM (2010) Do anthropogenic corridors homogenize plant communities at a local scale? A case studied in Tenerife (Canary Islands). Plant Ecol 209:23–35. doi: 10.1007/s11258-009-9716-y CrossRefGoogle Scholar
  9. Arteaga MA, Delgado JD, Otto R, Fernández-Palacios JM, Arévalo JR (2009) How do alien plants distribute along roads on oceanic islands? A case study in Tenerife, Canary Islands. Biol Invasions 11:1071–1086. doi: 10.1007/s10530-008-9329-8 CrossRefGoogle Scholar
  10. Bannister P (1966) The use of subjective estimates of cover-abundance as the basis for ordination. J Ecol 54:665–674CrossRefGoogle Scholar
  11. Beaumont L, Gallagher RV, Thuiller W, Downey PO, Leishman MR, Hughes L (2009) Different climatic envelopes among invasive populations may lead to underestimations of current and future biological invasions. Divers Distrib 15:409–420. doi: 10.1111/j.1472-4642.2008.00547.x CrossRefGoogle Scholar
  12. Becker T, Dietz H, Billeter R, Buschmann H, Edwards PJ (2005) Altitudinal distribution of alien plant species in the Swiss Alps. Perspect Plant Ecol Evol Syst 7:173–183. doi: 10.1016/j.ppees.2005.09.006 Google Scholar
  13. Broennimann O, Treier UA, Müller-Schärer H, Thuiller W, Peterson AT, Guisan A (2007) Evidence of climatic niche shift during biological invasion. Ecol Lett 10:701–709. doi: 10.1111/j.1461-0248.2007.01060.x PubMedCrossRefGoogle Scholar
  14. Cabildo Tenerife (2007) Mapa de Intensidades Medias Diarias de TráficoGoogle Scholar
  15. Christen D, Matlack G (2006) The role of roadsides in plant invasions: a demographic approach. Conserv Biol 20:385–391. doi: 10.1111/j.1523-1739.2006.00315.x PubMedCrossRefGoogle Scholar
  16. Christen DC, Matlack GR (2009) The habitat and conduit functions of roads in the spread of three invasive plant species. Biol Invasions 11:453–465. doi: 10.1007/s10530-008-9262-x CrossRefGoogle Scholar
  17. Chytrý M, Pyšek P, Wild J, Pino J, Maskell LC, Vilá M (2009) European map of alien plant invasions based on the quantitative assessment across habitats. Divers Distrib 15:98–107. doi: 10.1111/j.1472-4642.2008.00515.x CrossRefGoogle Scholar
  18. Currall JEP (1987) A transformation of the Domin scale. Vegetatio 72:81–87Google Scholar
  19. Daehler CC (2005) Upper-montane plant invasions in the Hawaiian Islands: patterns and opportunities. Perspect Plant Ecol Evol Syst 7:203–216. doi: 10.1016/j.ppees.2005.08.002 CrossRefGoogle Scholar
  20. Dahl E (1998) The phytogeography of Northern Europe (British Isles, Fennoscandia and adjacent areas). Cambridge University Press, CambridgeCrossRefGoogle Scholar
  21. Dawson W, Burslem DFRP, Hulme PE (2009) Factors explaining alien plant invasion success in a tropical ecosystem differ at each stage of invasion. J Ecol 97:657–665. doi: 10.1111/j.1365-2745.2009.01519.x CrossRefGoogle Scholar
  22. Dietz H, Edwards PJ (2006) Recognition of changing processes during plant invasions may help reconcile conflicting evidence of the drivers. Ecology 87:1359–1367. doi: 10.1890/0012-9658(2006)87[1359:RTCPCD]2.0.CO;2 PubMedCrossRefGoogle Scholar
  23. Dukes JS, Mooney HA (1999) Does global change increase the success of biological invaders? Trends Ecol Evol 14:135–139PubMedCrossRefGoogle Scholar
  24. Fernández-Palacios JM (1992) Climatic responses of plant species on Tenerife, The Canary Islands. J Veg Sci 3:595–602CrossRefGoogle Scholar
  25. Fernández-Palacios JM, de Nicolás JP (1995) Altitudinal pattern of vegetation variation on Tenerife. J Veg Sci 6:183–190CrossRefGoogle Scholar
  26. Forman RTT, Sperling D, Bissonette JA, Clevenger AP, Cutshall CD, Dale VH, Fahrig L, France R, Goldman CR, Heanue K, Jones JA, Swanson FJ, Turrentine T, Winter TC (2003) Road ecology: science and solutions. Island Press, WashingtonGoogle Scholar
  27. Gelbard JL, Belnap J (2003) Roads as conduits for exotic plant invasions in a semiarid landscape. Conserv Biol 17:420–432. doi: 10.1046/j.1523-1739.2003.01408.x CrossRefGoogle Scholar
  28. Gordon DR, Onderdonk DA, Fox AM, Stocker RK (2008) Consistent accuracy of the Australian weed risk assessment system across varied geographies. Divers Distrib 14:234–242. doi: 10.1111/j.1472-4642.2007.00460.x CrossRefGoogle Scholar
  29. Hawkins BA, Field R, Cornell H, Currie DJ, Guégan JF, Kaufman DM, Kerr JT, Mittelbach GG, Oberdoorff T, O’Brien EM, Porter EE, Turner JRG (2003) Energy, water, and broad-scale geographic patterns of species richness. Ecology 84:3105–3117. doi: 10.1890/03-8006 CrossRefGoogle Scholar
  30. Hijmans RJ, Cameron S, Parra J (2009) Worldclim. http://www.worldclim.org. Accessed 17 Nov 2009
  31. Hoernle K, Carracedo J-C (2009) Canary Islands, Geology. In: Gillespie R, Clague DA (eds) Encyclopedia of islands. University of California Press, Berkeley, pp 133–143Google Scholar
  32. Jakobs G, Kueffer C and Daehler CC (2010) Introduced weed richness across altitudinal gradients in Hawai’i: humps, humans and water-energy dynamics. Biol Inv (in press)Google Scholar
  33. Johnston FM, Johnston SW (2004) Impacts of road disturbance on soil properties and on exotic plant occurrence in subalpine areas of the Australian Alps. Arct Antarct Alp Res 36:201–207. doi: 10.1657/1523-0430(2004)036[0201:IORDOS]2.0.CO;2 CrossRefGoogle Scholar
  34. Johnston FM, Pickering CM (2001) Alien plants in the Australian Alps. Mt Res Dev 21:284–291. doi: 10.1659/0276-4741(2001)021[0284:APITAA]2.0.CO;2 CrossRefGoogle Scholar
  35. Kitayama K, Mueller-Dombois D (1995) Biological invasion on an oceanic island mountain: do alien plant species have wider ecological ranges than native species? J Veg Sci 6:667–674. doi: 10.2307/3236436 CrossRefGoogle Scholar
  36. Kolar CS, Lodge DM (2001) Progress in invasion biology: predicting invaders. Trends Ecol Evol 16:199–204PubMedCrossRefGoogle Scholar
  37. Körner C (2003) Alpine plant life. Functional plant ecology of high mountain ecosystems, 2nd edn. Springer, BerlinGoogle Scholar
  38. Kueffer C, Daehler CC, Torres-Santana CW, Lavergne C, Meyer J-Y, Otto R, Silva L (2010) A global comparison of plant invasions on oceanic islands. Perspect Plant Ecol Evol Syst 12:145–162. doi: 10.1016/j.ppees.2009.06.002 CrossRefGoogle Scholar
  39. Lilley PL, Vellend M (2009) Negative native-exotic diversity relationship in oak savannas explained by human influence and climate. Oikos 118:1373–1382. doi: 10.1111/j.1600-0706.2009.17503.x CrossRefGoogle Scholar
  40. Loope LL, Giambelluca TW (1998) Vulnerability of island tropical montane cloud forest to climate change, with special reference to east Maui, Hawaii. Clim Change 39:503–517. doi: 10.1023/A:1005372118420 CrossRefGoogle Scholar
  41. Marini L, Gaston KJ, Prosser F, Hulme PE (2009) Contrasting response of native and alien plant species richness to environmental energy and human impact along alpine elevation gradients. Glob Ecol Biogeogr 18:652–661. doi: 10.1111/j.1466-8238.2009.00484.x CrossRefGoogle Scholar
  42. Maron JL, Elmendorf SC, Vilà M (2007) Contrasting plant physiological adaptation to climate in the native and introduced range of Hypericum perforatum. Evolution 61:1912–1924. doi: 10.1111/j.1558-5646.2007.00153.x PubMedCrossRefGoogle Scholar
  43. Marzol MV (2008) Temporal characteristics and fog water collection during summer in Tenerife (Canary Islands, Spain). Atmos Res 87:352–361. doi: 10.1016/j.atmosres.2007.11.019 Google Scholar
  44. McDougall KL, Morgan JW, Walsh NG, Williams RJ (2005) Plant invasions in treeless vegetation of the Australian Alps. Perspect Plant Ecol Evol Syst 7:159–171. doi: 10.1016/j.ppees.2005.09.001 CrossRefGoogle Scholar
  45. Öckinger E, Franzén M, Rundlöf M, Smith HG (2009) Mobility-dependent effects on species richness in fragmented landscapes. Basic Appl Ecol 10:573–578. doi: 10.1016/j.baae.2008.12.002 CrossRefGoogle Scholar
  46. Parks CG, Radosevich SR, Endress BA, Naylor BJ, Anzinger D, Rew LJ, Maxwell BD, Dwire K (2005) Natural and land-use history of the northwest mountain ecoregions (USA) in relation to patterns of plant invasions. Perspect Plant Ecol Evol Syst 7:137–158. doi: 10.1016/j.ppees.2005.09.007 CrossRefGoogle Scholar
  47. Pauchard A, Alaback PB (2004) Influence of elevation, land use, and landscape context on patterns of alien plant invasions along roadsides in protected areas of south-central Chile. Conserv Biol 18:238–248. doi: 10.1111/j.1523-1739.2004.00300.x CrossRefGoogle Scholar
  48. Pauchard A, Kueffer C, Dietz H, Daehler CC, Alexander JM, Edwards PJ, Arévalo JR, Cavieres LA, Guisan A, Haider S, Jakobs G, McDougall K, Millar CI, Naylor BJ, Parks CG, Rew LJ, Seipel T (2009) Ain’t no mountain high enough: plant invasions reaching new elevations. Front Ecol Environ 7:479–486. doi: 10.1890/080072 CrossRefGoogle Scholar
  49. Peterson AT (2003) Predicting the geography of species’ invasions via ecological niche modeling. Q Rev Biol 78:419–433. doi: 10.1086/378926 PubMedCrossRefGoogle Scholar
  50. Richardson DM, Pyšek P (2006) Plant invasions: merging the concepts of species invasiveness and community invasibility. Prog Phys Geogr 30:409–431. doi: 10.1191/0309133306pp490pr CrossRefGoogle Scholar
  51. Ross LC, Lambdon PW, Hulme PE (2008) Disentangling the roles of climate, propagule pressure and land use on the current and potential elevational distribution of the invasive weed Oxalis pes-caprae L on Crete. Perspect Plant Ecol Evol Syst 10:251–258. doi: 10.1016/j.ppees.2008.06.001 CrossRefGoogle Scholar
  52. Roy S, Simon J-P, Lapointe F-J (2000) Determination of the origin of the cold-adapted populations of barnyard grass (Echinochloa crus-galli) in eastern North America: a total-evidence approach using RAPD DNA and DNA sequences. Can J Bot 78:1505–1513. doi: 10.1139/cjb-78-12-1505 CrossRefGoogle Scholar
  53. Schultz J (2005) The ecozones of the world. The ecological divisions of the geosphere. Springer, BerlinGoogle Scholar
  54. Sperling FN, Washington R, Whittaker RJ (2004) Future climate change of the subtropical North Atlantic: implications for the cloud forests on Tenerife. Clim Change 65:103–123. doi: 10.1023/B:CLIM.0000037488.33377.bf CrossRefGoogle Scholar
  55. Sullivan JJ, Williams PA, Timmins SM, Smale MC (2009) Distribution and spread of environmental weeds along New Zealand roadsides. N Z J Ecol 33:190–204Google Scholar
  56. Tatem AJ, Hay SI (2007) Climatic similarity and biological exchange in the worldwide airline transportation network. Proc R Soc Lond B Biol Sci 274:1489–1496. doi: 10.1098/rspb.2007.0148 CrossRefGoogle Scholar
  57. Thuiller W, Richardson DM, Pyšek P, Midgley GF, Hughes GO, Rouget M (2005) Niche-based modelling as a tool for predicting the risk of alien plant invasions at a global scale. Glob Chang Biol 11:2234–2250. doi: 10.1111/j.1365-2486.2005.01018.x CrossRefGoogle Scholar
  58. Ullmann I, Heindl B (1989) Geographical and ecological differentiation of roadside vegetation in temperate Europe. Bot Acta 102:261–340Google Scholar
  59. USDA, ARS, National Genetic Resources Program. Germplasm Resources Information Network - (GRIN) [Online Database]. National Germplasm Resources Laboratory, Beltsville, Maryland. http://www.ars-grin.gov/cgi-bin/npgs/html/index.pl. Accessed 19 Nov 2009
  60. Vilá M, Pino J, Font X (2007) Regional assessment of plant invasions across different habitat types. J Veg Sci 18:35–42. doi: 10.1111/j.1654-1103.2007.tb02513.x CrossRefGoogle Scholar
  61. Walther G-R, Roques A, Hulme PE, Sykes MT, Pyšek P, Kühn I, Zobel M, Bacher S, Botta-Dukát Z, Bugmann H, Czúcz B, Dauber J, Hickler T, Jarošík V, Kenis M, Klotz S, Minchin D, Moora M, Nentwig W, Ott J, Panov VE, Reineking B, Robinet C, Semenchenko V, Solarz W, Thuiller W, Vilà M, Vohland K, Settele J (2009) Alien species in a warmer world: risks and opportunities. Trends Ecol Evol 24:686–693. doi: 10.1016/j.tree.2009.06.008 PubMedCrossRefGoogle Scholar
  62. Western L, Juvik JO (1983) Roadside plant communities on Mauna Loa, Hawaii. J Biogeogr 10:307–316. doi: 10.2307/2844740 CrossRefGoogle Scholar
  63. Whittaker RJ, Fernández-Palacios JM (2007) Island biogeography. Ecology, evolution, and conservation, 2nd edn. Oxford University Press, OxfordGoogle Scholar
  64. Wilson JB, Rapson GL, Sykes MT, Watkins AJ, Williams PA (1992) Distributions and climatic correlations of some exotic species along roadsides in South Island, New Zealand. J Biogeogr 19:183–193CrossRefGoogle Scholar
  65. Wright DH, Patterson BD, Mikkelson GM, Cutler A, Atmar W (1998) A comparative analysis of nested subset patterns of species composition. Oecologia 113:1–20. doi: 10.1007/s004420050348 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Sylvia Haider
    • 1
    Email author
  • Jake Alexander
    • 2
  • Hansjörg Dietz
    • 2
  • Ludwig Trepl
    • 1
  • Peter J. Edwards
    • 2
  • Christoph Kueffer
    • 2
  1. 1.Department of Ecology and Ecosystem Management, Landscape EcologyTechnische Universität MünchenFreisingGermany
  2. 2.ETH Zurich, Institute of Integrative BiologyPlant Ecology GroupZurichSwitzerland

Personalised recommendations