Advertisement

Biological Invasions

, Volume 12, Issue 11, pp 3745–3755 | Cite as

Distribution of non-native invasive species and soil properties in proximity to paved roads and unpaved roads in a quartzitic mountainous grassland of southeastern Brazil (rupestrian fields)

  • Newton P. U. Barbosa
  • G. Wilson Fernandes
  • Marco A. A. Carneiro
  • Lélis A. C. Júnior
Original Paper

Abstract

One of the most important disturbances of roads is the facilitation of the increase of non-native invasive species into adjacent plant communities. The rupestrian fields of Serra do Cipó, a montane grassland ecosystem in southeastern Brazil, are recognized for their enormous richness of species and endemism rates. The presence of non-native invasive species in this ecosystem could threaten the existence of the native flora and its associated organisms. The aim of this study is to understand how non-native invasive species and native species are distributed along paved and unpaved roads, in a montaneous grassland ecosystem such as the Brazilian rupestrian fields. The two road surfaces provide differing gradients from their edges with respect to nutrients, soil chemical aspects and plant species diversity. High content of calcium at the roadside in the paved road resulted from the paving process, in which limestone gravel is used in one of the several paving phases. In these newly created habitats the toxicity of aluminum is drastically reduced and nutrient enriched, hence representing favorable sites from where non-native invasive species are capable to colonize and grow for undetermined period waiting the chance to invade the adjacent pristine habitats. Disturbances provoked by any natural or human-caused event can provide the opportunity for the non-native invasive species to colonize new plant communities.

Keywords

Biological invasion Road ecology Rupestrian fields Serra do Cipó Montaneous grasslands 

Notes

Acknowledgments

We thank V. Pivello and two anonymous reviewers for critical comments on initial versions of the manuscript. We also thank M. Sobral, A. M. Teles and P. Viana for the plant identifications. Logistical support was provided by the Natural Reserve Vellozia while the study was supported by CNPq (309633/2007-9, 476178/2008-8) and FAPEMIG (CRA-697/06, 465/07, EDT-465/07, APQ-01278/08). This work was in partial fulfillment for the Master dissertation of NPUB in the Universidade Federal de Minas Gerais, Brazil.

References

  1. Alvarez VHV, Novais RF, Barros NF, Cantarutti RB, Lopes AS (1999) Interpretação dos resultados das análises de solos. In: Ribeiro AC, Guimarães PTG, Alvarez VHV (eds) Recomendação para o uso de corretivos e fertilizantes em Minas Gerais: 5. Comissão de Fertilidade do Solo do Estado de Minas Gerais, Viçosa, pp 25–32Google Scholar
  2. Armstrong JK, Huenneke LF (1992) Spatial and temporal variation in species composition in California grasslands: the interaction of drought and substratum. In: Baker AJM, Proctor J, Reeves RD (eds) The vegetation of ultramafic (serpentine) soils. Intercept, Andover, USA, pp 213–233Google Scholar
  3. Bakar BH (2004) Invasive weed species in malaysian agro-ecosystems: species, impacts and management. Malaysian J Sci 23:1–42Google Scholar
  4. Barber SA (1984) Soil nutrient bioavailability. Wiley, USAGoogle Scholar
  5. Benefield CB, DiTomaso JM, Kyser GB, Orloff SB, Churches KR, Marcum DB, Nader GA (1999) Success of mowing to control yellow starthistle depends on timing and plant’s branching form. Calif Agric 53:17–21CrossRefGoogle Scholar
  6. Bengston DN, Fan DP (1999) The public debate about roads on the National Forests: an analysis of the news media, 1994–1998. J For 97:4–10Google Scholar
  7. Benites VM, Schaefer CEGR, Simas FNB, Santos HG (2007) Soils associated with rock outcrops in the Brazilian mountain ranges Mantiqueira and Espinhaço. Revista Brasileira de Botânica 30:569–577CrossRefGoogle Scholar
  8. Binkley D, Vitousek P (1989) Soil Nutrient Availability. In: Pearcy RW, Ehleringer JR, Mooney HA, Rundel PW (eds) Plant physiological ecology. Field methods and instrumentation. Chapman and Hall, London, pp 75–96Google Scholar
  9. Christen D, Matlack G (2006) The role of roadsites in plant invasions: a demographic approach. Conserv Biol 20:385–391CrossRefPubMedGoogle Scholar
  10. Christen D, Matlack G (2009) The habitat and conduit functions of roads in the spread of three invasive plant species. Biol Inv 11:453–465CrossRefGoogle Scholar
  11. Cole EK, Pope MD, Anthony RG (1997) Effects of road management on movement and survival of Roosevelt elk. J Wildlife Manag 61:1115–1126CrossRefGoogle Scholar
  12. Coutinho LM (1990) Fire in the Ecology of the Brazilian Cerrado. In: Goldammer JG (ed) Fire in the tropical biota. Springer, Berlin, pp 82–105Google Scholar
  13. Cronan CS, Grigal DF (1995) Use of calcium/aluminum ratios as indicators of stress in forest ecosystems. J Environ Qual 24:209–226CrossRefGoogle Scholar
  14. Daehler CC (2009) Short lag times for invasive tropical plants: evidence from experimental plantings in Hawai’i. PLoS ONE 4:e4462CrossRefPubMedGoogle Scholar
  15. Davis MA, Grime JP, Thompson K (2000) Fluctuating resources in plant communities: a general theory of invasibility. J Ecol 88:528–534CrossRefGoogle Scholar
  16. Dick RP, Thomas DR, Halvorson JJ (1996) Standardized methods, sampling and sample pretreatment. In: Doran JW, Jones AJ (ed) Methods for assessing soil quality. SSSA Special Publication 49, Madison, pp 107–121Google Scholar
  17. Dukes JS, Mooney HA (1999) Does Global change increase the success of biological invaders? Tree 14:135–139PubMedGoogle Scholar
  18. Forman RTT (2000) Estimate of the area affected ecologically by the road system in the United States. Conserv Biol 14:31–35CrossRefGoogle Scholar
  19. Forman RTT, Alexander LE (1998) Roads and their major ecological effects. Annl Rev Ecol Syst 29:207–231CrossRefGoogle Scholar
  20. Frenkel RE (1970) Ruderal vegetation along some California roadsides. University of California Press, BerkeleyGoogle Scholar
  21. Galvão MV, Nimer E (1965) Clima. Grande região leste. In: Instituto Brasileiro de Geografia e Estatística (ed) Geografia do Brasil. IBGE, Rio de Janeiro, pp 91–139Google Scholar
  22. Gelbard JL, Belnap J (2003) Roads as conduits for exotic plant invasions in a semiarid landscape. Conserv Biol 17:420–432CrossRefGoogle Scholar
  23. Giulietti AM, Menezes NL, Pirani JR, Meguro M, Wanderley MGL (1987) Flora da Serra do Cipó, Minas Gerais: caracterização e lista de espécies. Boletim de Botânica 9:1–151Google Scholar
  24. Giulietti AM, Pirani JR, Harley RM (1997) Espinhaço range region, eastern Brazil. In: Davis SD, Heywood VH, Herrera-MacBryde O, Villa-Lobos J, Hamilton AC (eds) Centres of plant diversity: a guide and strategy for they conservation. WWF/IUCN, Cambridge, pp 397–404Google Scholar
  25. Gomes V, Fernandes GW (2002) Germinação de aquênios de Baccharis dracunculifolia D. C. (Asteraceae). Acta Botânica Brasilica 16:421–427Google Scholar
  26. González AL, Kominoski JS, Danger M, Ishida S, Iwai M, Rubach A (2010) Can ecological stoichiometry help explain patterns of biological invasions? Oikos 000:001–013Google Scholar
  27. Greenberg CH, Crownover SH, Gordon DR (1997) Roadside soil: a corridor for invasion of xeric scrub by nonindigenous plants. Natur Areas J 17:99–109Google Scholar
  28. Haridasan M (1982) Aluminum accumulation by some cerrado native species of central Brazil. Plant Soil 65:265–273CrossRefGoogle Scholar
  29. Haridasan M (1987) Distribution and mineral nutrition of aluminum accumulating species in different plant communities of the cerrado region of central Brazil. In: San Jose JJ, Montes R (eds) La capacidad bioprodutiva de sabanas. IVIC, Caracas, pp 309–348Google Scholar
  30. Harrison S (1999) Native and Alien Species diversity at the local and regional scales in a grazed California grassland. Oecologia 121:99–106CrossRefGoogle Scholar
  31. Henry GM, Burton MG, Yelverton FH (2007) Effect of mowing on lateral spread and rhizome growth of troublesome Paspalum species. Weed Sci 55:486–490CrossRefGoogle Scholar
  32. Holzaphel C, Schmidt W (1990) Roadside vegetation along transects in the Judean desert. Isr J Bot 39:263–270Google Scholar
  33. Huenneke LF, Hamburg SP, Koide R, Mooney HA, Vitousek PM (1990) Effects of soil resources on plant invasion and community structure in Californian serpentine grassland. Ecology 71:478–491CrossRefGoogle Scholar
  34. Huston M (1979) A general hypothesis of species diversity. Am Nat 113:81–101CrossRefGoogle Scholar
  35. Huston M (2004) Management strategies for plant invasions: manipulating productivity, disturbance, and competition. Divers Distrib 10:167–178CrossRefGoogle Scholar
  36. Kissmann KG, Groth D (1995a) Plantas Infestantes e Nocivas. TOMO II, BASF S.A., São PauloGoogle Scholar
  37. Kissmann KG, Groth D (1995b) Plantas infestantes e nocivas. TOMO III, BASF S.A., São PauloGoogle Scholar
  38. Lay MG (1992) Ways of the world: a history of the world’s roads and of the vehicles that used them. Rutgers University Press, New JerseyGoogle Scholar
  39. Lonsdale WM, Lane LA (1994) Tourist vehicles as vectors of weed seeds in Kakadu National Park, northern Australia. Biol Conserv 69:277–283CrossRefGoogle Scholar
  40. Lopes AS (1983) Solos sob cerrado—Características, propriedade e manejo. POTAFOS, PiracicabaGoogle Scholar
  41. Ludsin SA, Wolfe AD (2001) Biological invasion theory: Darwin’s contributions from the origin of species. Bioscience 51:780–789CrossRefGoogle Scholar
  42. Machado PLOA (1997) Considerações gerais sobre a toxicidade do alumínio nas plantas (documentos 2). EMBRAPA-CNPS, Rio de JaneiroGoogle Scholar
  43. Madeira JA, Fernandes GW (1999) Reproductive phenology of sympatric taxa of Chamaecrista (Leguminosae) in Serra do Cipó, Brazil. J Trop Ecol 15:463–479CrossRefGoogle Scholar
  44. Martins CR, Leite LL, Haridasan M (2004) Capim-gordura (Melinis minutiflora P. Beauv.), uma gramínea exótica que compromete a recuperação de áreas degradadas em unidades de conservação. Revista Árvore 28:739–747CrossRefGoogle Scholar
  45. Medina BMO, Fernandes GW (2007) The potential of natural regeneration of rocky outcrop vegetation on rupestrian fields soils in “Serra do Cipó”, Brazil. Revista Brasileira de Botânica 30:665–678CrossRefGoogle Scholar
  46. Mitchell RJ, Marrs RH, Le Duc MG, Auld MHD (1999) A study of the restoration of heathland on successional sites: changes in vegetation and soil chemical properties. J Appl Ecol 36:770–783CrossRefGoogle Scholar
  47. Montgomery DC, Peck EA, Vining GG (2006) Introduction to linear regression analysis, 4th edn. Wiley, New YorkGoogle Scholar
  48. Moreira RG, McCauley RA, Cortés-Palomec AC, Fernandes GW, Oyama K (2009) Spatial genetic structure of Coccoloba cereifera (Polygonaceae), a critically endangered microendemic species of Brazilian rupestrian fields. Conserv Genet. doi: 10.1007/s10592-009-9953-6
  49. Munhoz CBR, Felfili JM (2007) Florística do estrato herbáceo-subarbustivo de um campo limpo úmido em Brasília, Brasil. Biota Neotropica 7:205–215CrossRefGoogle Scholar
  50. Nardoto GB, Bustamante MMC, Pinto AS, Klink CA (2006) Nutrient use efficiency at ecosystem and species level in savanna areas of Central Brazil and impacts off fire. J Trop Ecol 22:191–201CrossRefGoogle Scholar
  51. Negreiros D, Moraes MLB, Fernandes GW (2008) Caracterização da fertilidade dos solos de quarto leguminosas de campos rupestres, serra do cipó, MG, Brasil. Revista de la ciencia del suelo y nutrición vegetal 8:30–39Google Scholar
  52. Osaki M, Watanabe T, Tadano T (1997) Beneficial effect of aluminum on growth of plants adapted to low ph soils. Soil Sci Plant Nutr 43:551–563Google Scholar
  53. Parendes LA, Jones JA (2000) Role of light availability and dispersal in exotic plant invasion along roads and streams in the H. J. Andrews Experimental Forest, Oregon. Conserv Biol 14:64–75CrossRefGoogle Scholar
  54. Pauchard A, Alaback PB (2004) Influence of elevation, land use, and landscape context on patterns of alien plant invasion along roadsides in protected areas of South-Central Chile. Conserv Biol 18:238–248CrossRefGoogle Scholar
  55. Pavan MA, Bingham FT, Pratt PF (1984) Redistribution of exchangeable calcium, magnesium and aluminum following lime or gypsum application to a Brazilian oxisol. Soil Sci Soc Am 48:33–38CrossRefGoogle Scholar
  56. Pirani JR, Mello-Silva R, Giulietti AM (2003) Flora de Grão-Mogol, Minas Gerais, Brasil. Boletim de Botânica da Universidade de São Paulo 21:1–24Google Scholar
  57. R Development Core Team (2007) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Avaiable at http://www.R-project.org
  58. Ribeiro KT, Fernandes GW (2000) Patterns of abundance of a narrow endemic specie in a tropical and infertile montane habitat. Plant Ecol 147:205–218CrossRefGoogle Scholar
  59. Rodarte LHO, Fernandes GW, Oliveira JA (1998) Características físico-químicas de solos naturais e em áreas degradadas por atividades de construção rodoviária em campo rupestre. In: Anais do 3º Encontro Íbero-Americano de Unidades Ambientais do Setor de Transportes, Florianópolis, BrazilGoogle Scholar
  60. Sarbello W, Jackson LW (1985) Deer mortality in the Town of Malone, New York. Fish Game J 32:141–157Google Scholar
  61. Schmidt W (1989) Plant dispersal by motor cars. Vegetatio 80:147–152CrossRefGoogle Scholar
  62. Silva FC, Eira PA, van Raij B, Silva CA, Abreu CA, Gianello C, Pérez DV, Quaggio JA, Tedesco MJ, Abreu MF, Barreto WO (1999) Análises químicas para a avaliação da qualidade do solo. In: Silva FC (ed) Manual de Análises Químicas de Solos. Plantas e Fertilizantes. EMBRAPA, Brasília, pp 75–169Google Scholar
  63. Staples GW, Herbst DR, Imada CT (2000) Survey of invasive or potentially invasive cultivated plants in Hawaii. Bishop Museum Occasional Papers 65:1–34Google Scholar
  64. Thurber JM, Peterson RO, Drummer TD, Thomasma SA (1994) Gray wolf response to refuge boundaries and roads in Alaska. Wildl Soc Bull 22:61–68Google Scholar
  65. Tilman D (1993) How productivity limits colonization and species richness in grasslands. Ecology 74:2179–2191CrossRefGoogle Scholar
  66. Tilman D (1997) Community invasibility, recruitment limitation, and grassland biodiversity. Ecology 78:81–92CrossRefGoogle Scholar
  67. Trombulak SC, Frissell CA (2000) Review of ecological effects of roads on terrestrial and aquatic communities. Conserv Biol 14:18–30CrossRefGoogle Scholar
  68. Tyser RW, Worley CA (1992) Alien flora in grasslands adjacent to road and trail corridors in Glacier National Park, Montana (USA). Conserv Biol 6:253–262CrossRefGoogle Scholar
  69. Wester L, Jurvik JO (1983) Roadsite plant communities on Mauna Loa, Hawaii. J Biogeogr 10:307–316CrossRefGoogle Scholar
  70. Womack JG, Burge MN (2006) Mycoherbicide formulation and the potential for bracken control. Pest Sci 37:337–341CrossRefGoogle Scholar
  71. Wu S, Chaw S, Rejmánek M (2003) Naturalized Fabaceae (Leguminosae) species in Taiwan: the first approximation. Bot Bull Academia Sinica 44:59–66Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Newton P. U. Barbosa
    • 1
  • G. Wilson Fernandes
    • 1
  • Marco A. A. Carneiro
    • 2
  • Lélis A. C. Júnior
    • 1
  1. 1.Laboratório de Ecologia Evolutiva & Biodiversidade, ICB, Universidade Federal de Minas GeraisBelo HorizonteBrazil
  2. 2.Laboratório de Entomologia EcológicaUniversidade Federal de Ouro PretoOuro PretoBrazil

Personalised recommendations