Biological Invasions

, Volume 12, Issue 9, pp 3261–3275 | Cite as

Invasion of glossy privet (Ligustrum lucidum) and native forest loss in the Sierras Chicas of Córdoba, Argentina

  • Laura E. Hoyos
  • Gregorio I. Gavier-Pizarro
  • Tobias Kuemmerle
  • Enrique H. Bucher
  • Volker C. Radeloff
  • Paula A. Tecco
Original Paper


Glossy privet (Ligustrum lucidum) is a tree native to China that successfully invades forests of central Argentina. To fully understand glossy privet’s ecological effects on native forest, it is necessary to accurately map the distribution of glossy privet stands and the changes in biodiversity and forest structure of the invaded areas. The objectives of this paper were (1) to map the distribution of glossy privet stands in an area representative of the Sierras Chicas (Córdoba, Argentina) and (2) compare composition, structure and regeneration between glossy privet invaded stands and native forest stands. Using four Landsat TM images (October 2005, March, May and July 2006) we mapped the distribution of a glossy privet-dominated stand using a support vector machine, a non-parametric classifier. We recorded forest structure variables and tree diversity on 105 field plots. Glossy privet-dominated stands occupied 3,407 ha of the total forested land in the study area (27,758 ha), had an average of 33 glossy privet trees (dbh > 2.5 cm) per plot and the cover of their shrub and herb strata was substantially reduced compared with native forest. Forest regeneration was dominated by glossy privet in native forest stands adjacent to glossy privet-dominated stands. We conclude that in the Sierras Chicas glossy privet has become a widespread invader, changing the patterns of vertical structure, diversity, and regeneration in native forests.


Córdoba Ligustrum lucidum Argentina Plant invasions Biodiversity loss Landsat Support vector machines 



We thank A. Cingolani for valuable comments and suggestions on previous versions of the manuscript. C. Blumzak provided valuable assistance in the field. S. Benavidez generously provided field plot data for native forests. S. Schmidt, M. Hoyos and T. Albright greatly improved the English. We thank also two anonymous reviewers for the helpful comments during the reviewing process which substantially improved the manuscript. We gratefully acknowledge support from a Tinker-Nave Short Term Field Research Grant of the Latin American, Caribbean and Iberian Studies Program (University of Wisconsin-Madison) and the Fulbright/Organization of American States Fellowship to G. Gavier-Pizarro, from the Master in Wildlife Management Program (Maestría en Manejo de Vida Silvestre) of the National University of Córdoba to L. Hoyos, and a Fedor Lynen Research Fellowship by the Alexander von Humboldt Foundation to T. Kuemmerle. We would also like to thank A. Rabe, S. van der Linden, and P. Hostert for sharing the image SVM software and for helpful discussions.


  1. Aragón R (2000) Especies exóticas como recurso para las aves en bosques secundarios de las yungas. In: Grau HR, Aragón R (eds) Ecología de árboles exóticas en las yungas Argentinas. LIEY, TucumánGoogle Scholar
  2. Aragón R, Groom M (2003) Invasion by Ligustrum lucidum (Oleaceae) in NW Argentina: early stage characteristics in different habitat types. Rev Biol Trop 51:59–70PubMedGoogle Scholar
  3. Aragón R, Morales JM (2003) Species composition and invasion in NW Argentinian secondary forest: effects of land use history, environment and landscape. J Veg Sci 14:195–204CrossRefGoogle Scholar
  4. Asner GP, Jones MO, Martin RE, Knapp DE, Hughes RF (2008) Remote sensing of native and invasive species in Hawaiian forests. Remote Sens Environ 112:1912–1926CrossRefGoogle Scholar
  5. Bianco SE (1989) Estudio sobre la germinación de Lithraea ternifolia (GILL) BARKLEY, ROM y descripción de frutos, semillas y plántulas. Tesina. Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de CórdobaGoogle Scholar
  6. Boppré M, Biller A, Fischer OW, Hartmann T (1992) The non-nutritional relationship of Zonocerus (Orthoptera) to Chromolaena (Asteraceae). In: Menken SBJ, Visser JH, Harrewijn P (eds) Proceedings of the 8th international symposium insect-plant relationships. Kluwer Academic, Dordrecht, pp 89–90Google Scholar
  7. Bradley BA, Mustard JF (2006) Characterizing the landscape dynamics of an invasive plant and risk of invasion using remote sensing. Ecol Appl 16:1132–1147CrossRefPubMedGoogle Scholar
  8. Braithwaite RW, Lonsdale WA, Estbergs JA (1989) Alien vegetation and native biota in tropical Australia: the spread and impact of Mimosa pigra. Biol Conserv 48:189–210CrossRefGoogle Scholar
  9. Brooks ML, D’Antonio CM, Richardson DM, Grace JB, Keeley JE, DiTomaso JM, Hobbs RJ, Pellant M, Pyke D (2004) Effects of invasive alien plants on fire regimes. Bioscience 54:677–688CrossRefGoogle Scholar
  10. Buchanan RA (1989) Bush regeneration. Department of Technical and Further Education [NSW], SydneyGoogle Scholar
  11. Burges CJC (1998) A tutorial on support vector machines for pattern recognition. Data Min Knowl Discov 2:121–167CrossRefGoogle Scholar
  12. Capitanelli RG (1979) Clima. In: Vázquez JB, Miatello RA, Roque E (eds) Geografía Física de la Provincia de Córdoba. Buenos Aires, Boldt, pp 45–138Google Scholar
  13. Cohen WB, Goward SN (2004) Landsat’s role in ecological applications of remote sensing. Bioscience 54(6):535–545CrossRefGoogle Scholar
  14. Congalton RG (1991) A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens Environ 37:35–46CrossRefGoogle Scholar
  15. Cronk QCB, Fuller JL (1995) Plant invaders: the threat to natural ecosystems. Chapman & Hall, LondonGoogle Scholar
  16. Dymond CC, Mladenoff DJ, Radeloff VC (2002) Phenological differences in Tasseled Cap indices improve deciduous forest classification. Remote Sens Environ 80:460–472CrossRefGoogle Scholar
  17. Elton CS (1958) The ecology of invasions by animals and plants. Methuen & Co, LondonGoogle Scholar
  18. Foody GM (2002) Status of land cover classification accuracy assessment. Remote Sens Environ 80:185–201CrossRefGoogle Scholar
  19. Foody GM, Mathur A (2004) A relative evaluation of multiclass image classification by support vector machines. IEEE Trans Geosci Remote Sens 42(6):1335–1343CrossRefGoogle Scholar
  20. Foody GM, Atkinson PM, Gething PW, Ravenhill NA, Kelly CK (2005) Identification of specific tree species in ancient semi-natural woodland from digital aerial sensor imagery. Ecol Appl 15:1233–1244CrossRefGoogle Scholar
  21. Gavier G (2002) Deforestación y Fragmentación del Bosque en las Sierras Chicas de Córdoba, Argentina. Tesis de Maestría, Programa de Postgrado en Manejo de Vida Silvestre, Universidad Nacional de Córdoba, ArgentinaGoogle Scholar
  22. Gavier G, Bucher EH (2004) Deforestación de las Sierras Chicas de Córdoba (Argentina) en el período 1970–1997. Academia Nacional de Ciencias Miscelánea 101:1–27Google Scholar
  23. Goward SN, Masek JG (2001) Landsat—30 years and counting. Remote Sens Environ 78:1–2CrossRefGoogle Scholar
  24. Grau HR, Aragón R (2000) Árboles Invasores de la Sierra de San Javier, Tucumán Argentina. In: Grau HR, Aragón R (eds) Ecología de árboles exóticas en las yungas Argentinas. LIEY, TucumánGoogle Scholar
  25. Grau HR, Gasparri NI, Aide TM (2008) Balancing food production and nature conservation in the Neotropical dry forests of northern Argentina. Glob Chang Biol 14:985–997CrossRefGoogle Scholar
  26. Gurvich DE, Tecco PA, Díaz S (2005) Plant invasion in undisturbed ecosystems: the triggering attribute approach. J Veg Sci 16:723–728CrossRefGoogle Scholar
  27. Hays RL, Summers C, Seitz W (1981) Estimating wildlife habitat variables. Biological Services Program, Fish and Wildlife Service, US Department of the InteriorGoogle Scholar
  28. Hill MO, Gauch HG (1980) Detrended correspondence analysis: an improved ordination technique. Vegetatio 42:47–58CrossRefGoogle Scholar
  29. Hoyos LE (2007) Evaluación del grado de invasión del siempreverde (Ligustrum lucidum) en la Sierras Chicas de Córdoba. Tesis de Maestría, Programa de Postgrado en Manejo de Vida Silvestre, Universidad Nacional de Córdoba, ArgentinaGoogle Scholar
  30. Huang C, Davis LS, Townshend RG (2002) An assessment of support vector machines for land cover classification. Int J Remote Sens 23:725–749CrossRefGoogle Scholar
  31. Hunt ER, Everitt JH, Ritchie JC, Moran MS, Booth DT, Anderson GL, Clark PE, Seyfried MS (2003) Applications and research using remote sensing for rangeland management. Photogramm Eng Remote Sens 69:675–693Google Scholar
  32. Janz A, van der Linden S, Waske B, Hostert P (2007) ImageSVM—a user-oriented tool for advanced classification of hyperspectral data using support vector machines. In: Reusen I, Cools J (eds) EARSeL SIG imaging spectroscopy. Bruges, BelgiumGoogle Scholar
  33. Kuemmerle T, Hostert P, Radeloff VC, van der Linden S, Perzanowski K, Kruhlov I (2008) Cross-border comparison of post-socialist farmland abandonment in the Carpathians. Ecosystems 11:614–628CrossRefGoogle Scholar
  34. Lass LW, Prather TS, Glenn NF, Weber KT, Mundt JT, Pettingill JA (2005) Review of remote sensing of invasive weeds and example of the early detection of spotted knapweed (Centaurea maculosa) and babysbreath (Gypsophila paniculata) with a hyperspectral sensor. Weed Sci 53:242–251CrossRefGoogle Scholar
  35. Lonsdale WM (1993) Rates of spread of an invading species—Mimosa-pigra in Northern Australia. J Ecol 81:513–521CrossRefGoogle Scholar
  36. Luti R, Galera MA, Muller N, Berzal N, Nores M, Herrera M, Barrera JC (1979) Vegetación. In: Vázquez JB, Miatello RA, Roqué ME (eds) Geografía Física de la Provincia de Córdoba. Banco de la Provincia de Córdoba, Editorial BoldtGoogle Scholar
  37. Mack MC, D’Antonio CM (1998) Impacts of biological invasions on disturbance regimes. Tree 13:195–198Google Scholar
  38. Mack RN, Simberloff D, Lonsdale WM, Evans H, Clout M, Bazzaz FA (2000) Biotic invasions: causes, epidemiology, global consequences, and control. Ecol Appl 10:689–710CrossRefGoogle Scholar
  39. Marco DE, Páez SA (2000) Invasion of Gleditsia triacanthos in Lithraea ternifolia montane forest of central Argentina. Environ Manage 26:409–419CrossRefPubMedGoogle Scholar
  40. Merriam RW, Fiel E (2002) Potential impact of an introduced shrub on native plant diversity and forest regeneration. Biol Invasions 4:369–373CrossRefGoogle Scholar
  41. Meyerson LA, Mooney HA (2007) Invasive alien species in an era of globalization. Front Ecol Environ 5:199–208CrossRefGoogle Scholar
  42. Montaldo NH (1993) Dispersión por aves y éxito reproductivo de dos especies de Ligustrum (Oleaceae) en un relicto de selva subtropical en la Argentina. Rev Chil Hist Nat 66:75–85Google Scholar
  43. Montaldo NH (2000) Reproductive success of bird-dispersed plants in a subtropical forest relict in Argentina. Rev Chil Hist Nat 73:511–524CrossRefGoogle Scholar
  44. Noujdina NV, Ustin SL (2008) Mapping downy brome (Bromus tectorum) using multidate AVIRIS data. Weed Sci 56:173–179CrossRefGoogle Scholar
  45. Pal M, Mather PM (2005) Support vector machines for classification in remote sensing. Int J Remote Sens 26:1007–1011CrossRefGoogle Scholar
  46. Peterson EB (2005) Estimating cover of an invasive grass (Bromus Tectorum) using tobit regression and phenology derived from two dates of Landsat Etm Plus Data. Int J Remote Sens 26:2491–2507CrossRefGoogle Scholar
  47. Primack RB, Ros J (2002) Introducción a la Biología de la Conservación. Editorial ArielGoogle Scholar
  48. Rejmanek M, Pitcairn MJ (2002) When is eradication of exotic pest plants a realistic goal. In: Veitch CR, Clout MN (eds) Turning the tide: the eradication of invasive species. Occasional Paper of the IUCN Species Survival Commission, IUCN SSC Invasive Species Specialist Group, GlandGoogle Scholar
  49. Ribichich AM, Protomastro J (1998) Woody vegetation structure of xeric forest stands under different edaphic site conditions and disturbance histories in the Biosphere Reserve ‘Parque Costero del Sur’, Argentina. Plant Ecol 139:189–201CrossRefGoogle Scholar
  50. Richardson DM (1998) Forestry trees as invasive aliens. Conserv Biol 12:18–26CrossRefGoogle Scholar
  51. Richardson DM, Williams PA, Hobbs RJ (1994) Pine Invasion in the Southern Hemisphere: determinants of spread and invadability. J Biogeogr 21:511–527CrossRefGoogle Scholar
  52. Richardson DM, van Wilgen B, Nuñez MA (2008) Alien conifer invasions in South America: short fuse burning? Biol Invasions 10:573–577CrossRefGoogle Scholar
  53. Rio ME, Achaval L (1904) Geografía de la Provincia de Córdoba. Compañía Sud-Americana de Billetes de Banco, Buenos AiresGoogle Scholar
  54. Schmitz DC, Simberloff D, Hofstetter RH, Haller W, Sutton D (1997) The ecological impact of the nonindigenous plants. In: Simberloff D, Schmitz DC, Brown TC (eds) Strangers in paradise: impact and management of nonindigenous species in Florida. Island, Washington, DC, pp 39–61Google Scholar
  55. Sokal R, Rohlf F (1979) Biometría. Principios y Métodos Estadísticos en la Investigación Biológica, H. Blume EdicionesGoogle Scholar
  56. Sutherland WJ (1996) Ecological census techniques: a handbook. Cambridge University Press, CambridgeGoogle Scholar
  57. Swarbrick JT, Timmins SM, Bullen KM (1999) The biology of Australian weeds. 36. Ligustrum lucidum Aiton and Ligustrum sinense Lour. Plant Prot Q 14:122–130Google Scholar
  58. Tecco PA, Gurvich DE, Díaz S, Pérez-Harguindeguy N, Cabido M (2006) Positive interaction between invasive plants: the influence of Pyracantha angustifolia on the recruitment of native and exotic woody species. Austral Ecol 31:293–300CrossRefGoogle Scholar
  59. Tecco PA, Díaz S, Gurvich DE, Pérez-Harguindeguy N, Cabido M, Bertone GA (2007) Experimental evidence of positive association between exotic woody species: facilitation by Pyracantha angustifolia on Ligustrum lucidum sapling survival. Appl Veg Sci 10:211–218Google Scholar
  60. Theoharides KA, Dukes JS (2007) Plant invasion across space and time: factors affecting nonindigenous species success during four stages of invasion. New Phytol 176:256–273CrossRefPubMedGoogle Scholar
  61. Vapnik V (1995) The nature of statistical learning theory. Springer, New YorkGoogle Scholar
  62. Vitousek PM, Mooney HA, Lubchenco J, Melillo JM (1997) Human domination of earth’s ecosystems. Science 277:494–499CrossRefGoogle Scholar
  63. Woodcock CE, Allen R, Anderson M, Belward A, Bindschadler R, Cohen WB, Gao F, Goward SN, Helder D, Helmer E, Nemani R, Oreopoulos L, Schott J, Thenkabail PS, Vermote EF, Vogelmann J, Wulder MA, Wynne R (2008) Free access to Landsat imagery. Science 320:1011CrossRefPubMedGoogle Scholar
  64. Zak MR, Cabido M (2002) Spatial patterns of the Chaco vegetation of central Argentina: integration of remote sensing and phytosociology. Appl Veg Sci 5:213–226CrossRefGoogle Scholar
  65. Zalba SM, Villamil CB (2002) Woody plant invasions in relictual grasslands. Biol Invasions 4(1–2):55–72CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Laura E. Hoyos
    • 1
  • Gregorio I. Gavier-Pizarro
    • 2
  • Tobias Kuemmerle
    • 2
  • Enrique H. Bucher
    • 3
  • Volker C. Radeloff
    • 2
  • Paula A. Tecco
    • 1
  1. 1.Instituto Multidisciplinario de Biología Vegetal (IMBIV-CONICET) and Facultad de Ciencias Exactas, Físicas y NaturalesUniversidad Nacional de CórdobaCórdobaArgentina
  2. 2.Department of Forest and Wildlife EcologyUniversity of Wisconsin-MadisonMadisonUSA
  3. 3.Centro de Zoología AplicadaUniversidad Nacional de CórdobaCórdobaArgentina

Personalised recommendations