Advertisement

Biological Invasions

, Volume 12, Issue 9, pp 3109–3122 | Cite as

Antagonistic effects of large- and small-scale disturbances on exotic tree invasion in a native tussock grassland relict

  • C. Noemí MazíaEmail author
  • Enrique J. Chaneton
  • Marina Machera
  • Andrea Uchitel
  • María Victoria Feler
  • Claudio M. Ghersa
Original Paper

Abstract

It is generally accepted that disturbances increase community invasibility. Yet the role of disturbance in plant invasions may be less predictable than often assumed, due to the influence of environmental stochasticity and interactions between disturbance regimes. We evaluated the single and interactive effects of prescribed burning (large-scale, infrequent event) and animal diggings (small-scale, frequent events) on the invasion success of Gleditsia triacanthos L. in a tussock grassland relict of the Inland Pampa, Argentina. Tree seedling emergence and survival were monitored over 4 years, after adjusting for propagule pressure through copious seed addition to all disturbance treatments. Burning altered community structure by suppressing tussock grasses and promoting exotic forbs, whereas simulated, armadillo-like diggings had little impact on herbaceous composition. Overall, seedling emergence rather than survival represented the main demographic bottleneck for tree invasion. Tree establishment success varied among seedling cohorts emerged in different climatic years. In a dry year, emergence was only slightly affected by disturbances. In contrast, for two consecutive wet years, initial burning and armadillo-like diggings exerted strong, antagonistic effects on tree recruitment. Whereas fire alone increased recruitment, the simulated burrowing regime prevented seedling emergence in both burned and unburned plots. The latter effect might be explained by reduced soil moisture, and increased seed burial and predation in excavated patches. Thus, the impact of a single, large-scale perturbation promoting woody plant invasion was overridden by a regime of small-scale, frequent disturbances. Our results show that grassland invasibility was contingent on inter-annual climatic variation as well as unexpected interactions between natural and anthropogenic disturbance agents.

Keywords

Animal burrows Fire Gleditsia triacanthos Seedling recruitment Seed predation Tree–grass interactions 

Notes

Acknowledgments

We thank M. L. Bolkovic, H. Trebino, P. Tognetti, M. Rabadán and D. Ferraro for field assistance, and the staff at Estancia “San Claudio” and Administración de Campos (UBA) for logistic support. This study was funded by Agencia Nacional de Promoción Científica y Tecnológica, Consejo Nacional de Investigaciones Científicas y Técnicas, and Universidad de Buenos Aires. The comments from one anonymous reviewer greatly helped to improve the original manuscript.

References

  1. Alpert P, Bone E, Holzapfel C (2000) Invasiveness, invasibility and the role of environmental stress in the spread of non-native plants. Persp Plant Ecol Evol Syst 3:52–66CrossRefGoogle Scholar
  2. Bilenca D, Miñarro F (2004) Identificación de áreas valiosas de pastizal (AVPs) en las Pampas y Campos de Argentina, Uruguay y sur de Brasil. Fundación Vida Silvestre Argentina, Buenos AiresGoogle Scholar
  3. Bond WJ (2008) What limits trees in C4 grasslands and savannas? Ann Rev Ecol Evol Syst 39:641–659CrossRefGoogle Scholar
  4. Boulant N, Kunstler G, Rambal S, Lepart J (2008) Seed supply, drought, and grazing determine spatio-temporal patterns of recruitment for native and introduced invasive pines in grasslands. Div Distr 14:862–874CrossRefGoogle Scholar
  5. Burton PJ, Bazzaz FA (1991) Tree seedling emergence on interactive temperature and moisture gradients and in patches of old-field vegetation. Amer J Bot 78:131–149CrossRefGoogle Scholar
  6. Cabrera AL, Zardini EM (1978) Manual de la flora de los alrededores de Buenos Aires. Acme, Buenos AiresGoogle Scholar
  7. Cannas SA, Marco DE, Páez SA (2003) Modelling biological invasions: species traits, species interactions, and habitat heterogeneity. Math Biosci 183:93–110CrossRefPubMedGoogle Scholar
  8. Chaneton EJ, Facelli JM (1991) Disturbance effects on plant community diversity: spatial scales and dominance hierarchies. Vegetatio 93:143–155CrossRefGoogle Scholar
  9. Chaneton EJ, Perelman SB, Omacini M, León RJC (2002) Grazing, environmental heterogeneity, and alien plant invasions in temperate Pampa grasslands. Biol Inv 4:7–24CrossRefGoogle Scholar
  10. Crawley MJ (1989) Chance and timing in biological invasions. In: Drake JA, Mooney HA, di Castri F, Groves RH, Kruger FJ, Rejmánek M, Williamson M (eds) Biological invasions: a global perspective. Wiley, Chichester, pp 407–424Google Scholar
  11. Crawley MJ (1993) GLIM for ecologists. Blackwell, OxfordGoogle Scholar
  12. D’Antonio CM (1993) Mechanisms controlling invasion of coastal plant communities by the alien succulent Carpobrotus edulis. Ecology 74:83–95CrossRefGoogle Scholar
  13. D’Antonio CM, Dudley TL, Mack M (1999) Disturbance and biological invasions: direct effects and feedbacks. In: Walker LR (ed) Ecosystems of disturbed ground. Ecosystems of the world 16. Elsevier, Amsterdam, pp 413–452Google Scholar
  14. Davis MA, Pelsor M (2001) Experimental support for a resource-based mechanistic model of invasibility. Ecol Lett 4:421–428CrossRefGoogle Scholar
  15. Davis MA, Wrage KJ, Reich PB (1998) Competition between tree seedlings and herbaceous vegetation: support for a theory of resource supply and demand. J Ecol 86:652–661CrossRefGoogle Scholar
  16. Davis MA, Grime JP, Thompson K (2000) Fluctuating resources in plant communities: a general theory of invasibility. J Ecol 88:528–534CrossRefGoogle Scholar
  17. De Blois S, Brisson J, Bouchard A (2004) Herbaceous covers to control tree invasion in rights-of-way: ecological concepts and applications. Environ Manag 5:606–619Google Scholar
  18. Dickie IA, Schnitzer SA, Reich PB, Hobbie SE (2007) Is oak establishment in old-fields and savanna openings context dependent? J Ecol 95:309–320CrossRefGoogle Scholar
  19. Elton CS (1958) The ecology of invasions by animals and plants. Methuen, LondonGoogle Scholar
  20. Eviner VE, Chapin FS III (2003) Gopher–plant–fungal interactions affect establishment of an invasive grass. Ecology 84:120–128CrossRefGoogle Scholar
  21. Facelli JM, León RJC (1986) El establecimiento espontáneo de árboles en la Pampa- un enfoque experimental. Phytocoenologia 14:263–274Google Scholar
  22. Ghersa CM, León RJC (1999) Successional changes in agroecosystems of the Rolling Pampa. In: Walker LR (ed) Ecosystems of disturbed ground. Ecosystems of the World 16. Elsevier, Amsterdam, pp 487–502Google Scholar
  23. Ghersa CM, de la Fuente E, Suarez S, León RJC (2002) Woody species invasion in the Rolling Pampa grasslands, Argentina. Agric Ecosys Environ 88:271–278CrossRefGoogle Scholar
  24. Grime JP (2001) Plant strategies, vegetation processes, and ecosystem properties, 2nd edn. Wiley, ChichesterGoogle Scholar
  25. Hobbs RJ, Huenneke LF (1992) Disturbance, diversity, and invasion - implications for conservation. Cons Biol 6:324–337CrossRefGoogle Scholar
  26. Hudson WH (1918) Far away and long ago—a childhood in Argentina. Eland, LondonGoogle Scholar
  27. Kotanen PM (1997) Effects of experimental soil disturbance on revegetation by natives and exotics on coastal Californian meadows. J Appl Ecol 34:631–644CrossRefGoogle Scholar
  28. Laterra P, Vignolo OR, Linares MP, Giaquinta A, Maceira N (2003) Cumulative effects of fire on tussock pampa grasslands. J Veg Sci 14:43–54CrossRefGoogle Scholar
  29. Levine JM, Adler PB, Yelenik SG (2004) A meta-analysis biotic resistance to exotic plant invasions. Ecol Lett 7:975–989CrossRefGoogle Scholar
  30. Lockwood J, Hoopes MF, Marchetti MP (2007) Invasion Ecology. Blackwell, OxfordGoogle Scholar
  31. Lonsdale WM (1999) Global patterns of plant invasion and the concept of invasibility. Ecology 80:1522–1536CrossRefGoogle Scholar
  32. MacDougall AS, Wilson S (2007) Herbivory limits recruitment in an old-field seed addition experiment. Ecology 88:1105–1111CrossRefPubMedGoogle Scholar
  33. Machera M (2006) La invasión de pastizales por especies exóticas: el papel de disturbios de diferente escala espacial. PhD Dissertation, Facultad de Ciencias Exactas y Naturales, University of Buenos AiresGoogle Scholar
  34. Marco DE, Páez SA (2000) Invasion of Gleditsia triacanthos in Lithraea ternifolia forests of central Argentina. Environ Manag 26:409–419CrossRefGoogle Scholar
  35. Maron JL, Vilà M (2001) When do herbivores affect plant invasion? Evidence for the natural enemies and biotic resistance hypotheses. Oikos 95:361–373CrossRefGoogle Scholar
  36. Mazía CN, Chaneton EJ, Ghersa CM, León RJC (2001) Limits to tree species invasion in pampean grassland and forest plant communities. Oecologia 128:594–602CrossRefGoogle Scholar
  37. McIntyre S, Lavorel S (1994) How environmental and disturbance factors influence species composition in temperate Australian grasslands. J Veg Sci 5:373–384CrossRefGoogle Scholar
  38. Mitchell CE, Agrawal AA, Bever JD, Gilbert GS, Hufbauer RA et al (2006) Biotic interactions and plant invasions. Ecol Lett 9:726–740CrossRefPubMedGoogle Scholar
  39. Murillo N, Laterra P, Monterubbianesi G (2007) Post-dispersal granivory in a tall-tussock grassland: A positive feedback mechanism of dominance? J Veg Sci 18:799–806CrossRefGoogle Scholar
  40. Nuñez M, Simberloff D, Relva MA (2008) Seed predation as a barrier to alien conifer invasions. Biol Inv 10:1389–1398CrossRefGoogle Scholar
  41. O’Connor TG (1995) Acacia karroo invasion of grassland: environmental and biotic effects influencing seedling emergence and establishment. Oecologia 103:214–223CrossRefGoogle Scholar
  42. Ortega Y, Pearson D (2005) Weak vs. strong invaders of natural plant communities: assessing invasibility and impact. Ecol Appl 15:651–661CrossRefGoogle Scholar
  43. Parodi LR (1947) Vegetación de la Argentina. La estepa pampeana. GAEA 8:143–207Google Scholar
  44. Petraitis PS, Latham RE (1999) The importance of scale in testing the origins of alternative community states. Ecology 80:421–442CrossRefGoogle Scholar
  45. Sankaran M, Ratnam J, Haram NP (2006) Tree-grass coexistence in savannas revisited–insights from an examination of assumptions and mechanisms invoked in existing models. Ecol Lett 7:480–490CrossRefGoogle Scholar
  46. Schnabel A, Wendel JF (1998) Cladistic biogeography of Gleditsia (Leguminosae) based on NDHF and RPL16 chloroplast gene sequences. Amer J Bot 85:1753–1765CrossRefGoogle Scholar
  47. Scholes RJ, Archer SR (1997) Tree-grass interactions in savannas. Ann Rev Ecol Syst 28:517–544CrossRefGoogle Scholar
  48. Setterfield SA (2002) Seedling establishment in an Australian tropical savanna: effects of seed supply, soil disturbance and fire. J Appl Ecol 39:949–959CrossRefGoogle Scholar
  49. Shea K, Cheeson PS (2002) Community ecology theory as a framework for biological invasions. Trends Ecol Evol 17:170–176CrossRefGoogle Scholar
  50. Simberloff D (2009) The role of propagule pressure in biological invasions. Annu Rev Ecol Evol Syst 40:81–102CrossRefGoogle Scholar
  51. Soriano A (1992) Río de la Plata grasslands. In: Coupland RT (ed) Natural grasslands: introduction and western hemisphere. ecosystems of the world 8A. Elsevier, Amsterdam, pp 367–407Google Scholar
  52. StatSoft, Inc. (1999) STATISTICA for Windows. Computer program manual. TulsaGoogle Scholar
  53. Svensson JR, Lindegarth M, Pavia H (2009) Equal rates of disturbance cause different patterns of diversity. Ecology 90:496–505CrossRefPubMedGoogle Scholar
  54. Thomsen MA, D’Antonio CM, Sutle KB, Sousa WP (2006) Ecological resistance, seed density and their interactions determine patterns of invasion in a California coastal grassland. Ecol Lett 9:160–170CrossRefPubMedGoogle Scholar
  55. Von Holle B, Simberloff D (2005) Ecological resistance to biological invasion overwhelmed by propagule pressure. Ecology 86:3212–3218CrossRefGoogle Scholar
  56. White PS, Pickett STA (1985) Natural disturbance and patch dynamics: an introduction. In: Pickett STA, White PS (eds) The ecology of natural disturbance and patch dynamics. Academic Press, New York, pp 3–13Google Scholar
  57. White EM, Wilson JC, Clarke AR (2006) Biotic indirect effects: a neglected concept in invasion biology. Diversity Distrib 12:443–455CrossRefGoogle Scholar
  58. Williamson M (1996) Biological invasions. Chapman & Hall, LondonGoogle Scholar
  59. Xiong S, Nilsson C (1999) The effect of plant litter on vegetation: a meta-analysis. J Ecol 87:984–994CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • C. Noemí Mazía
    • 1
    Email author
  • Enrique J. Chaneton
    • 2
  • Marina Machera
    • 2
  • Andrea Uchitel
    • 2
  • María Victoria Feler
    • 1
  • Claudio M. Ghersa
    • 2
  1. 1.Departamento de Producción Vegetal, Facultad de AgronomíaUniversidad de Buenos AiresBuenos AiresArgentina
  2. 2.IFEVA–CONICET and Facultad de AgronomíaUniversidad de Buenos AiresBuenos AiresArgentina

Personalised recommendations