Biological Invasions

, Volume 12, Issue 9, pp 3061–3069 | Cite as

Food web overlap among native axolotl (Ambystoma mexicanum) and two exotic fishes: carp (Cyprinus carpio) and tilapia (Oreochromis niloticus) in Xochimilco, Mexico City

  • Luis ZambranoEmail author
  • Elsa Valiente
  • M. Jake Vander Zanden
Original Paper


Two exotic fishes, common carp (Cyprinus carpio) and tilapia (Oreochromis niloticus), were introduced more than 20 years ago into Xochimilco for aquaculture, and now dominate the system in terms of biomass and numbers. Over this same period, wild populations of the microendemic axolotl salamander (Ambystoma mexicanum) have been dramatically reduced, and it currently persists in isolated areas of this aquatic system, which is situated at the edge of Mexico City. In this study, we examine potential trophic interactions and niche overlap among two exotic fishes: carp and tilapia, and the native axolotl. Axolotl had more diverse diets and a higher trophic position compared to the exotics. Stable isotope analysis revealed substantial trophic niche overlap among axolotl and the exotics. The two exotics occupied a larger niche area than the axolotl, suggesting higher levels of omnivory and diet specialization. Current exotic fish removal efforts will further our understanding of interactions between the axolotl and exotic species, and are expected to benefit axolotl recovery efforts.


Isotopes Gut contents Urban lake Salamander Food web niche 



Thanks to anonymous referees that made helpful suggestions to improve this manuscript quality. Also thanks to Roberto Altamirano and Alma Itzel Martinez, for their help in the data collection, and Victoria Contreras for the map. The project was partially funded by Posgrado de Ciencias Biologicas y Maestría en Restauracion Ecológica, and Canadian Association of Zoo and Aquarium (CAZA).


  1. Alcocer-Durand J, Escobar-Briones E (1992) The aquatic biota of the now extinct lacustrine complex of the Mexico Basin. Freshw For 2:1–13Google Scholar
  2. Alvarez F, Rangel R (2007) Population study of the crayfish Cambarellus montezumae (Crustacea: Decapoda: Cambaridae) in Xochimilco, Mexico. Revista Mexicana de Biodiversidad 78:431–437Google Scholar
  3. Amundsen PA, Gabler HM, Staldvik FJ (1996) A new approach to graphical analysis of feeding strategy from stomach contents data-modification of the Costello method. J Fish Biol 48:607–614Google Scholar
  4. Avnimelech Y, Kochva M, Hargreaves JA (1999) Sedimentation and resuspension in earthen fish ponds. J World Aquac Soc 30:401–409CrossRefGoogle Scholar
  5. Brothers AJ (1977) Instructions for the care and feeding of axolotls. Axolotl Newsletter 3. Indiana University, axolotl colony, pp 9–16Google Scholar
  6. Cahn AR (1929) The effect of carp on small lake, the carp as a dominant. Ecology 10:271–274CrossRefGoogle Scholar
  7. Canonico GC, Angela A, Thieme MJK, Michele L (2005) The effects of introduced tilapias on native biodiversity. Aqua Conserv Marine Freshw Ecosyst 15:463–483CrossRefGoogle Scholar
  8. Chase J, Abrams PA, Grover J, Diehl S, Chesson P, Holt R, Richards S, Nisbet R, Case T (2002) The interaction between predation and competition: a review and synthesis. Ecol Lett 5:302–315CrossRefGoogle Scholar
  9. Contreras V, Martinez-Meyer E, Valiente-Riveros E, Zambrano L (2009) Recent decline and potential distribution in the last remnant area of the microendemic Mexican axolotl (Ambystoma mexicanum). Biol Conserv. doi: 10.1016/j.biocon.2009.07.008
  10. Crossley PL (2004) Sub-irrigation in wetland agriculture. Agric Hum Values 21:191–205CrossRefGoogle Scholar
  11. Figueredo CC, Giani A (2005) Ecological interactions between Nile tilapia (Oreochromis niloticus, L.) and the phytoplanktonic community of the Furnas Reservoir (Brazil). Freshw Biol 50:1391–1403CrossRefGoogle Scholar
  12. Hargrave CW, Ramirez R, Brooks M, Eggleton MA, Sutherland K, Deaton R, Galbraith H (2006) Indirect food web interactions increase growth of an algivorous stream fish. Freshw Biol 51:1901–1910CrossRefGoogle Scholar
  13. Hecky RE, Hesslein R (1995) Contributions of benthic algae to lake food webs as revealed by stable isotope analysis. J North Am Benthol Soc 14:631–653CrossRefGoogle Scholar
  14. Huchette SMH, Beveridge MCM, Baird DJ (2000) The impacts of grazing by tilapias (Oreochromis niloticus L.) on periphyton communities growing on artificial substrate in cages. Aquaculture 186:1–2CrossRefGoogle Scholar
  15. Jiménez J, Rojas-Rabiela T, Gómez-Pompa A (1995) Conclusiones y recomendaciones del Taller. In: Social CdIyeSdA (ed) Presente, pasado y futuro de las chinampas, México DF, pp 19–43Google Scholar
  16. Layman CA, Arrington DA, Montaña CG, Post DM (2007) Can stable isotope ratios provide for community-wide measures of trophic structure? Ecology 88:42–48CrossRefPubMedGoogle Scholar
  17. Li H, Rossignol P, Castillo G (1999) Risk analysis of species introductions: insights from qualitative modeling. In: Claudi R, Leach JH (eds) Nonindigenous freshwater organisms. Lewis, New York, pp 431–448Google Scholar
  18. Lynch M (1979) Predation, competition, and zooplankton community structure—experimental-study. Limnol Oceanogr 24:253–272CrossRefGoogle Scholar
  19. McCann K, Hastings A, Huxel GR (1998) Weak trophic interactions and the balance of nature. Nature 395:794–798CrossRefGoogle Scholar
  20. Mercado-Silva N, Helmus M, Vander Zanden MJ (2008) The effects of impoundments and invasive species on a river food web in Mexico’s central plateau. River Res Appl. doi: 10.1002/rra.1205
  21. Minns CK, Cooley JM (1999) Intentional introduction: are the incalculable risks worth it? In: Claudi R, Leach JH (eds) Nonindigenous freshwater organisms. Lewis, New York, pp 57–60Google Scholar
  22. Okun N, Brasil J, Attayde JL, Costa IAS (2008) Omnivory does not prevent trophic cascades in pelagic food webs. Freshw Biol 53:129–138Google Scholar
  23. Paine RT (1966) Food web complexity and species diversity. Am Nat 100:65–75CrossRefGoogle Scholar
  24. Persson L, Greenberg L (1990) Juvenile competitive bottlenecks: the perch (Perca fluviatilis) roach (Rutilus rutilus) interaction. Ecology 71:44–56CrossRefGoogle Scholar
  25. Persson A, Svensson JM (2006) Effects of benthivorous fish on biogeochemical processes in lake sediments. Freshw Biol 51:1298–1309CrossRefGoogle Scholar
  26. Petern K, Case TJ (1996) An experimental demonstration of exploitation competition in an on going invasion. Ecology 77:118–132CrossRefGoogle Scholar
  27. Peterson BJ, Fry B (1987) Stable isotopes in ecosystem studies. Annu Rev Ecol Syst 18:293–320CrossRefGoogle Scholar
  28. Pringle CM, Hamazaki T (1998) The role of omnivory in a neotropical stream: separating diurnal and nocturnal effects. Ecology 79:269–280CrossRefGoogle Scholar
  29. Rooney N, McCann KS, Gellner G, Moore JC (2006) Structural asymmetry and the stability of diverse food webs. Nature 442:265–269CrossRefPubMedGoogle Scholar
  30. Stephan-Otto E (2005) El Parque Ecológico de Xochimilco. In: CO UNES (ed) Xochimilco, un proceso de gestión participativa. UNESCO, Puebla, pp 67–68Google Scholar
  31. Vadeboncoeur Y, McCann KS, Vander Zanden MJ, Rasmussen JB (2005) Effects of multi-chain omnivory on the strength of trophic control in lakes. Ecosystems 8:682–693CrossRefGoogle Scholar
  32. Valiente E (2006) Efecto de las especies introducidas en Xochimilco para la rehabilitación del hábitat del ajolote (Ambystoma mexicanum), Maestría en Restauración. Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, MéxicoGoogle Scholar
  33. Vander Zanden MJ, Casselman JM, Rasmussen JB (1999) Stable isotope evidence for the food web consequences of species invasions in lakes. Nature 401:464–467CrossRefGoogle Scholar
  34. Vander Zanden MJ, Chandra S, Allen BC, Reuter JE, Goldman CR (2003) Historical food web structure and restoration of native aquatic communities in the Lake Tahoe (California-Nevada) basin. Ecosystems 6:274–288CrossRefGoogle Scholar
  35. Vander Zanden MJ, Olden JD, Gratton C (2006a) Food-web approaches in restoration ecology. In: Falk DA, Palmer MA, Zedler JB (eds) Foundations of restoration ecology. Island Press, Washington, DC, pp 165–189Google Scholar
  36. Vander Zanden MJ, Chandra S, Park S-K, Vadeboncoeur Y, Gooldman CR (2006b) Efficiencies of benthic and pelagic trophic pathways in a subalpine lake. Can J Fish Aquat Sci 63:2608–2620CrossRefGoogle Scholar
  37. Webster IT, Ford PW, Hancock G (2001) Phosphorus dynamics in Australian lowland rivers. Mar Freshw Res 52:127–137CrossRefGoogle Scholar
  38. Werner EE, Hall DJ (1977) An experimental test of the effects of predation risk on habitat use in fish. Ecology 64:1540–1548CrossRefGoogle Scholar
  39. Zambrano L, Valiente E (2008) Mitigación del impacto de las especies introducidas en la zona lacustre de Xochimilco. Gobierno del Distrito Federal, Instituto de Biología de la UNAM, México DFGoogle Scholar
  40. Zambrano L, Scheffer M, Martinez-Ramos M (2001) Catastrophic response of lakes to response to benthivorous fish introduction. Oikos 94:344–350CrossRefGoogle Scholar
  41. Zambrano L, Martínez-Mayer E, Meneses N, Towsend PA (2006) Invasive potential of common carp (Cyprinus carpio) and Nile tilapia (Oreochromis niloticus) in American freshwater systems. Can J Fish Aquat Sci 63:1903–1910CrossRefGoogle Scholar
  42. Zambrano L, Vega E, Herrera L, Prado E, Reynoso V (2007) A population matrix model and population viability analysis to predict the fate of endangered species in highly managed water systems. Anim Conserv 10:297–303CrossRefGoogle Scholar
  43. Zambrano L, Contreras V, Mazari-Hiriart M, Zarco-Arista A (2009) Spatial heterogeneity of water quality in a highly degraded tropical freshwater ecosystem. Environ Manage 43:249–263CrossRefPubMedGoogle Scholar
  44. Zhao W, Dong SL, Zheng WG, Zhang ZQ (2000) Effects of Nile tilapia on plankton in enclosures with different treatments in saline-alkaline ponds. Zool Res 21:103–114Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Luis Zambrano
    • 1
    Email author
  • Elsa Valiente
    • 1
  • M. Jake Vander Zanden
    • 2
  1. 1.Departamento de Zoologia, Instituto de BiologiaUniversidad Nacional Autonoma de MexicoMexicoMexico
  2. 2.Center for LimnologyUniversity of Wisconsin–MadisonMadisonUSA

Personalised recommendations