Biological Invasions

, Volume 12, Issue 6, pp 1709–1719 | Cite as

Does the invasive species Reynoutria japonica have an impact on soil and flora in urban wastelands?

  • Noëlie MaurelEmail author
  • Sandrine Salmon
  • Jean-François Ponge
  • Nathalie Machon
  • Jacques Moret
  • Audrey Muratet
Original Paper


Invasive plants are recognised as a major threat to biodiversity. Although they are well-established in natural areas, the supposed negative impacts of invasive plants upon communities and ecosystems have so far been poorly investigated in urban areas, where invasions are a main issue for ecologists and for urban planners and managers. We propose to assess the effects of an invasive species along an invasion gradient in a typical urban habitat. We focused on the Japanese knotweed (Reynoutria japonica Houtt.), a widespread invasive species in Europe and North America. We considered eight urban wastelands invaded by this species in the heart of the Greater Paris Area, France. On each site, we ran four transects from the centre of the Japanese knotweed patch towards the uninvaded peripheral vegetation. We recorded the flora using the line intercept method, and several soil parameters (thickness of A horizon, abundance of earthworm casts, topsoil Munsell value, pH) every metre along each transect. The A horizon was thicker and the topsoil darker under R. japonica canopy. Thus, this invasive plant species seemed to influence soil organic matter pool. However, our results also steadily showed that R. japonica locally excluded and/or severely reduced the cover of many plant species through competition. Our study clarified the local effects of R. japonica: an influence on the soil organic matter, and a severe negative impact on wasteland plant communities. We suggest implications in both conservation and restoration ecology.


Competition Organic matter Japanese knotweed Wasteland plant community Fallopia japonica Polygonum cuspidatum 



We are grateful to Emmanuelle Porcher for her help with statistical analyses and useful comments on this manuscript. We also thank Monika Zavodna and Claire Jouseau for their constructive comments on the draft. This research was supported by the Région Ile-de-France and the Réseau Francilien de Recherche sur le Développement Soutenable (R2DS). Anne Lindsey corrected the English.


  1. Adams LW (2005) Urban wildlife ecology and conservation: a brief history of the discipline. Urban Ecosyst 8(2):139–156CrossRefGoogle Scholar
  2. AFNOR (1999) NF ISO 10390. Qualité des sols, vol 2. AFNOR, ParisGoogle Scholar
  3. Beerling DJ, Bailey JP, Conolly AP (1994) Biological flora of the British Isles. Fallopia japonica (Houtt.) Ronse Decraene. J Ecol 82(4):959–979CrossRefGoogle Scholar
  4. Bohlen PJ (2006) Biological invasions: linking the aboveground and belowground consequences. Appl Soil Ecol 32(1):1–5CrossRefGoogle Scholar
  5. Canfield RH (1941) Application of the line-intercept method in sampling vegetation. J Forest 39:388–394Google Scholar
  6. Conservatoire Botanique National du Bassin Parisien (CBNBP) (2008).
  7. Dassonville N (2008) Impact des plantes exotiques envahissantes sur le fonctionnement des écosystèmes en Belgique. Thesis, Université Libre de Bruxelles, BruxellesGoogle Scholar
  8. Dassonville N, Vanderhoeven S, Gruber W, Meerts P (2007) Invasion by Fallopia japonica increases topsoil mineral nutrient concentrations. Ecoscience 14(2):230–240CrossRefGoogle Scholar
  9. Ehrenfeld JG (2003) Effects of exotic plant invasions on soil nutrient cycling processes. Ecosystems 6(6):503–523CrossRefGoogle Scholar
  10. Gerber E, Krebs C, Murrell C, Moretti M, Rocklin R, Schaffner U (2008) Exotic invasive knotweeds (Fallopia spp.) negatively affect native plant and invertebrate assemblages in European riparian habitats. Biol Conserv 141(3):646–654CrossRefGoogle Scholar
  11. Godefroid S, Monbaliu D, Koedam N (2007) The role of soil and microclimatic variables in the distribution patterns of urban wasteland flora in Brussels, Belgium. Landscape Urban Plan 80(1–2):45–55CrossRefGoogle Scholar
  12. Gurevitch J, Padilla DK (2004) Are invasive species a major cause of extinctions? Trends Ecol Evol 19(9):470–474CrossRefPubMedGoogle Scholar
  13. Hirose T, Tateno M (1984) Soil-nitrogen patterns induced by colonization of Polygonum cuspidatum on Mt. Fuji. Oecologia 61(2):218–223CrossRefGoogle Scholar
  14. IAURIF (2003) Institute for Planning and Development of the Paris Ile-de-France Region.
  15. INSEE (2006) National Institute for Statistics and Economic Studies.
  16. Kerguélen M (2003) Base de Données Nomenclaturales de la Flore de France (BDNFF) version 3Google Scholar
  17. Klironomos JN (2002) Feedback with soil biota contributes to plant rarity and invasiveness in communities. Nature 417(6884):67–70CrossRefPubMedGoogle Scholar
  18. Kourtev PS, Huang WZ, Ehrenfeld JG (1999) Differences in earthworm densities and nitrogen dynamics in soils under exotic and native plant species. Biol Invasions 1(2–3):237–245CrossRefGoogle Scholar
  19. Kowarik I (1995) On the role of alien species in urban flora and vegetation. In: Pysek P, Prach K, Rejmanek M, Wade M (eds) Plant invasions–general aspects and special problems. SPB Academic Publishing, Amsterdam, pp 85–103Google Scholar
  20. Kulmatiski A, Beard KH, Stark JM (2006) Soil history as a primary control on plant invasion in abandoned agricultural fields. J Appl Ecol 43(5):868–876CrossRefGoogle Scholar
  21. Legendre P, Anderson MJ (1999) Distance-based redundancy analysis: testing multispecies responses in multifactorial ecological experiments. Ecol Monogr 69(1):1–24CrossRefGoogle Scholar
  22. Levine JM, Vila M, D’Antonio CM, Dukes JS, Grigulis K, Lavorel S (2003) Mechanisms underlying the impacts of exotic plant invasions. Proc R Soc London Ser B 270:775–781CrossRefGoogle Scholar
  23. Levine JM, Pachepsky E, Kendall BE, Yelenik SG, Lambers JHR (2006) Plant-soil feedbacks and invasive spread. Ecol Lett 9(9):1005–1014CrossRefPubMedGoogle Scholar
  24. Lowe S, Browne M, Boudjelas S, De Poorter M (2000) 100 of the World’s Worst Invasive Alien Species. A selection from the Global Invasive Species Database. Invasive Species Specialist Group (ISSG)Google Scholar
  25. Maerz JC, Blossey B, Nuzzo V (2005) Green frogs show reduced foraging success in habitats invaded by Japanese knotweed. Biodivers Conserv 14(12):2901–2911CrossRefGoogle Scholar
  26. MapInfo, MapInfo corporation (2006) MapInfo professional version 8.5.
  27. McKinney ML (2004) Citizens as propagules for exotic plants: measurement and management implications. Weed Technol 18:1480–1483CrossRefGoogle Scholar
  28. McKinney ML, Lockwood JL (1999) Biotic homogenization: a few winners replacing many losers in the next mass extinction. Trends Ecol Evol 14(11):450–453CrossRefPubMedGoogle Scholar
  29. Meiners SJ, Pickett STA, Cadenasso ML (2001) Effects of plant invasions on the species richness of abandoned agricultural land. Ecography 24(6):633–644CrossRefGoogle Scholar
  30. Miller JR, Hobbs RJ (2002) Conservation where people live and work. Conserv Biol 16(2):330–337CrossRefGoogle Scholar
  31. Müller S (2004) Plantes invasives en France. Muséum national d’Histoire naturelle, ParisGoogle Scholar
  32. Munsell Color Company (1975) Munsell soil color charts. Baltimore, MDGoogle Scholar
  33. Muratet A, Machon N, Jiguet F, Moret J, Porcher E (2007) The role of urban structures in the distribution of wasteland flora in the Greater Paris Area, France. Ecosystems 10(4):661–671CrossRefGoogle Scholar
  34. Muratet A, Porcher E, Devictor V, Arnal G, Moret J, Wright S, Machon N (2008) Evaluation of floristic diversity in urban areas as a basis for habitat management. Appl Veg Sci 11:451–460CrossRefGoogle Scholar
  35. Niemelä J (1999) Ecology and urban planning. Biodivers Conserv 8(1):119–131CrossRefGoogle Scholar
  36. Olden JD (2006) Biotic homogenization: a new research agenda for conservation biogeography. J Biogeogr 33:2027–2039CrossRefGoogle Scholar
  37. Pinheiro JC, Bates DM (2000) Mixed-effects models in S and S-PLUS. Springer, New YorkCrossRefGoogle Scholar
  38. Pysek P (1998) Alien and native species in Central European urban floras: a quantitative comparison. J Biogeogr 25(1):155–163CrossRefGoogle Scholar
  39. R Development Core Team (2008) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  40. Reichard SH, White P (2001) Horticulture as a pathway of invasive plant introductions in the United States. Bioscience 51(2):103–113CrossRefGoogle Scholar
  41. Richardson DM, Pysek P, Rejmanek M, Barbour MG, Panetta FD, West CJ (2000) Naturalization and invasion of alien plants: concepts and definitions. Divers Distrib 6:93–107CrossRefGoogle Scholar
  42. Rosenzweig ML (2003) Win–Win ecology. Oxford University Press, New YorkGoogle Scholar
  43. Siemens TJ, Blossey B (2007) An evaluation of mechanisms preventing growth and survival of two native species in invasive bohemian knotweed (Fallopia x bohemica, Polygonaceae). Am J Bot 94(5):776–783CrossRefGoogle Scholar
  44. Simberloff D (2006) Invasional meltdown 6 years later: important phenomenon, unfortunate metaphor, or both? Ecol Lett 9:912–919CrossRefPubMedGoogle Scholar
  45. Simberloff D, Von Holle B (1999) Positive interactions of nonindigenous species: invasional meltdown? Biol Invasions 1:21–32CrossRefGoogle Scholar
  46. Smith JMD, Ward JP, Child LE, Owen MR (2007) A simulation model of rhizome networks for Fallopia japonica (Japanese knotweed) in the United Kingdom. Ecol Model 200:421–432CrossRefGoogle Scholar
  47. Sukopp H (2002) On the early history of urban ecology in Europe. Preslia 74:373–393Google Scholar
  48. Thioulouse J, Chessel D, Doledec S, Olivier JM (1997) ADE-4: a multivariate analysis and graphical display software. Stat Comput 7(1):75–83CrossRefGoogle Scholar
  49. Trepl L (1995) Towards a theory of urban biocenoses. Some hypotheses and research questions. In: Sukopp H, Numata M, Huber A (eds) Urban ecology as the basis of urban planning. SPB Academic Publishing, The Hague, pp 3–21Google Scholar
  50. Vanderhoeven S, Dassonville N, Meerts P (2005) Increased topsoil mineral nutrient concentrations under exotic invasive plants in Belgium. Plant Soil 275(1–2):169–179CrossRefGoogle Scholar
  51. Vilà M, Pujadas J (2001) Land-use and socio-economic correlates of plant invasions in European and North African countries. Biol Conserv 100:397–401CrossRefGoogle Scholar
  52. Vitousek P (1990) Biological invasions and ecosystem processes: towards an integration of population biology and ecosystem studies. Oikos 57:7–13CrossRefGoogle Scholar
  53. Vitousek PM, D’Antonio CM, Loope LL, Rejmanek M, Westbrooks R (1997) Introduced species: a significant component of human-caused global change. New Zeal J Ecol 21(1):1–16Google Scholar
  54. von der Lippe M, Kowarik I (2007) Long-distance dispersal of plants by vehicles as a driver of plant invasions. Conserv Biol 21(4):986–996CrossRefGoogle Scholar
  55. Vrchotova N, Sera B (2008) Allelopathic properties of knotweed rhizome extracts. Plant Soil Environ 54(7):301–303Google Scholar
  56. Wearne LJ, Morgan JW (2004) Community-level changes in Australian subalpine vegetation following invasion by the non-native shrub Cytisus scoparius. J Veg Sci 15(5):595–604Google Scholar
  57. Westphal MI, Browne M, MacKinnon K, Noble I (2008) The link between international trade and the global distribution of invasive alien species. Biol Invasions 10(4):391–398CrossRefGoogle Scholar
  58. Williams NSG, Morgan JW, McDonnell MJ, McCarthy MA (2005) Plant traits and local extinctions in natural grasslands along an urban–rural gradient. J Ecol 93(6):1203–1213CrossRefGoogle Scholar
  59. Wills SA, Burras CL, Sandor JA (2007) Prediction of soil organic matter carbon content using field and laboratory measurements of soil color. Soil Sci Soc Am J 71:380–388CrossRefGoogle Scholar
  60. Wolfe BE, Klironomos JN (2005) Breaking new ground: soil communities and exotic plant invasion. Bioscience 55(6):477–487CrossRefGoogle Scholar
  61. Yu XJ, Yu D, Lu ZJ, Ma KP (2005) A new mechanism of invader success: exotic plant inhibits natural vegetation restoration by changing soil microbe community. Chinese Sci Bull 50(11):1105–1112CrossRefGoogle Scholar
  62. Yurkonis KA, Meiners SJ (2004) Invasion impacts local species turnover in a successional system. Ecol Lett 7:764–769CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Noëlie Maurel
    • 1
    • 2
    Email author
  • Sandrine Salmon
    • 3
  • Jean-François Ponge
    • 3
  • Nathalie Machon
    • 1
  • Jacques Moret
    • 2
  • Audrey Muratet
    • 1
  1. 1.UMR 7204 MNHN/CNRS/UPMCParisFrance
  2. 2.Conservatoire Botanique National du Bassin ParisienParisFrance
  3. 3.UMR 7179 MNHN/CNRSBrunoyFrance

Personalised recommendations