Biological Invasions

, Volume 12, Issue 5, pp 1183–1206 | Cite as

PRUNUS: a spatially explicit demographic model to study plant invasions in stochastic, heterogeneous environments

  • Emmanuelle Sebert-Cuvillier
  • Matthieu Simonet
  • Valérie Simon-Goyheneche
  • Frédéric Paccaut
  • Olivier Goubet
  • Guillaume Decocq
Original Paper


To model the invasion of Prunus serotina invasion within a real forest landscape we built a spatially explicit, non-linear Markov chain which incorporated a stage-structured population matrix and dispersal functions. Sensitivity analyses were subsequently conducted to identify key processes controlling the spatial spread of the invader, testing the hypothesis that the landscape invasion patterns are driven in the most part by disturbance patterns, local demographical processes controlling propagule pressure, habitat suitability, and long-distance dispersal. When offspring emigration was considered as a density-dependent phenomenon, local demographic factors generated invasion patterns at larger spatial scales through three factors: adult longevity; adult fecundity; and the intensity of self-thinning during stand development. Three other factors acted at the landscape scale: habitat quality, which determined the proportion of the landscape mosaic which was potentially invasible; disturbances, which determined when suitable habitats became temporarily invasible; and the existence of long distance dispersal events, which determined how far from the existing source populations new founder populations could be created. As a flexible “all-in-one” model, PRUNUS offers perspectives for generalization to other plant invasions, and the study of interactions between key processes at multiple spatial scales.


Disturbance Invasibility Invasiveness Long-distance dispersal Population-based matrix model Propagule pressure 



We are grateful to Olivier Chabrerie, Marie Pairon and Jean Boucault for their help in parameterizing the model and to Jérôme Jaminon (Office National des Forêts) for facilities during field data collection. We thank Mark Bilton for revising the language. This study was financially supported by the French ‘Ministère de l’Ecologie et du Développement Durable’ (INVABIO II program, CR n°09-D/2003).


  1. Alpert P, Bone E, Holzapfel C (2000) Invasiveness, invasibility and the role of environmental stress in the spread of non-native plants. Perspect Plant Ecol Evol Syst 3:52–66CrossRefGoogle Scholar
  2. Amarasekare P (2004) The role of density-dependent dispersal in source-sink dynamics. J Theor Biol 226:159–168CrossRefPubMedGoogle Scholar
  3. Briske DD, Fuhlendorf SD, Smeins FE (2003) Vegetation dynamics on rangelands: a critique of the current paradigms. J Appl Ecol 40:601–614CrossRefGoogle Scholar
  4. Buckley YM, Briese DT, Rees M (2003) Demography and management of the invasive plant species Hypericum perforatum. II. Construction and use of an individual-based model to predict population dynamics and the effects of management strategies. J Appl Ecol 40:494–507CrossRefGoogle Scholar
  5. Callaway RM, Maron JL (2006) What have exotic invasions taught us over the past twenty years? Trends Ecol Evol 21:369–374CrossRefPubMedGoogle Scholar
  6. Cannas SA, Marco DE, Páez SA (2003) Modelling biological invasions: species traits, species interactions, and habitat heterogeneity. Math Biosci 183:93–110CrossRefPubMedGoogle Scholar
  7. Cannas SA, Marco DE, Montemurro MA (2006) Long range dispersal and spatial pattern formation in biological invasions. Math Biosci 203:155–170CrossRefPubMedGoogle Scholar
  8. Chabrerie O, Hoeblich H, Decocq G (2007a) Déterminisme et conséquences écologiques de la dynamique invasive du cerisier tardif (Prunus serotina Ehrh.) sur les communautés végétales de la forêt de Compiègne. Acta Bot Gall 154:383–394Google Scholar
  9. Chabrerie O, Roulier F, Hoeblich H, Sebert E, Closset-Kopp D, Leblanc I, Jaminon J, Decocq G (2007b) Defining patch mosaic functional types to predict invasion patterns in a forest landscape. Ecol Appl 17:464–481CrossRefPubMedGoogle Scholar
  10. Chabrerie O, Verheyen K, Saguez R, Decocq G (2008) Disentangling relationships between habitat conditions, disturbance history, plant diversity and American Black cherry (Prunus serotina Ehrh.) invasion in a European temperate forest. Divers Distrib 14:204–212CrossRefGoogle Scholar
  11. Clark JS, Fastie C, Hurtt G, Jackson ST, Johnson C, King GA, Lewis M, Lynch J, Pacala S, Prentice C, Schupp EW, Web T III, Wyckoff P (1998) Reid’s paradox of rapid plant migration. Bioscience 48:13–24CrossRefGoogle Scholar
  12. Closset-Kopp D, Chabrerie O, Valentin B, Delachapelle H, Decocq G (2007) When Oskar meets Alice: does a lack of trade-off in r/K-strategies make Prunus serotina a successful invader of European forests? For Ecol Manag 247:120–130CrossRefGoogle Scholar
  13. Colautti RI, Grigorovich IA, MacIsaac HJ (2006) Propagule pressure: a null model for biological invasions. Biol Invasions 8:1023–1037CrossRefGoogle Scholar
  14. Crawley MJ (1987) What makes a community invasible? In: Gray AJ, Crawley MJ, Edwards PJ (eds) Colonization, succession and stability. Blackwell, Oxford, pp 429–453Google Scholar
  15. Davis MA, Grime JP, Thompson K (2000) Fluctuating resources in plant communities: a general theory of invasibility. J Ecol 88:528–536CrossRefGoogle Scholar
  16. Deckers B, Verheyen K, Hermy M, Muys B (2005) Effects of landscape structure on the invasive spread of black cherry Prunus serotina in an agricultural landscape in Flanders, Belgium. Ecography 28:99–109CrossRefGoogle Scholar
  17. Decocq G, Aubert M, Dupont F, Alard D, Saguez R, Wattez-Franger A, de Foucault B, Delelis-Dussolier A, Bardat J (2004) Plant diversity in a managed temperate deciduous forest: understorey response to two silvicultural systems. J Appl Ecol 41:1065–1079CrossRefGoogle Scholar
  18. Drake JM, Lodge DM (2006) Allee effects, propagule pressure and the probability of establishment: risk analysis for biological invasions. Biol Invasions 8:365–375CrossRefGoogle Scholar
  19. Elton CS (1958) The ecology of invasions by animals and plants. Methuen, LondonGoogle Scholar
  20. Garnier A, Lecomte J (2006) Using a spatial and stage-structured invasion model to assess the spread of feral populations of transgenic oilseed rape. Ecol Model 194:141–149CrossRefGoogle Scholar
  21. Godefroid S, Phartyal S, Koedam N (2005) Ecological factors controlling the abundance of non-native invasive Black Cherry (Prunus serotina) in deciduous forest understory in Belgium. For Ecol Manag 210:91–105CrossRefGoogle Scholar
  22. Greene DH, Canham CD, Coates D, Lepage PT (2004) An evaluation of alternative dispersal functions for trees. J Ecol 92:758–766. doi:10.1111/j.0022-0477.2004.00921.x CrossRefGoogle Scholar
  23. Haccou P, Iwasa Y (1996) Establishment probability in fluctuating environments: a branching process model. Theor Popul Biol 50:254–280CrossRefPubMedGoogle Scholar
  24. Hanski I (1999) Metapopulation ecology. Oxford University Press, OxfordGoogle Scholar
  25. Hierro JL, Villarreal D, Eren O, Graham JM, Callaway RM (2006) Disturbance facilitates invasion: the effects are stronger abroad than at home. Am Nat 168:144–156CrossRefPubMedGoogle Scholar
  26. Higgins SI, Richardson DM (1996) A review of models of alien plant spread. Ecol Model 87:249–265CrossRefGoogle Scholar
  27. Higgins SI, Richardson DM (1998) Pine invasions in the southern hemisphere: modelling interactions between organism, environment and disturbance. Plant Ecol 135:79–93CrossRefGoogle Scholar
  28. Higgins SI, Richardson DM (1999) Predicting plant migration rates in a changing world: the role of long-distance dispersal. Am Nat 153:464–475CrossRefGoogle Scholar
  29. Jongejans E, Skarpaas O, Shea K (2008) Dispersal, demography and spatial population models for conservation and control management. Persp Plant Ecol Evol Syst 9:153–170CrossRefGoogle Scholar
  30. Kolar CS, Lodge DM (2001) Progress in invasion biology: predicting invaders. Trends Ecol Evol 16:199–204CrossRefPubMedGoogle Scholar
  31. Kot M, Lewis M, van den Driessche P (1996) Dispersal data and the spread of invading organisms. Ecology 77:2027–2042CrossRefGoogle Scholar
  32. Lake JC, Leischman MR (2004) Invasion success of exotic plants in natural ecosystems: the role of disturbance, plant attributes and freedom from herbivores. Biol Conserv 117:215–226CrossRefGoogle Scholar
  33. Lockwood JL, Cassey P, Blackburn T (2005) The role of propagule pressure in explaining species invasion. Trends Ecol Evol 20:223–228CrossRefPubMedGoogle Scholar
  34. Lonsdale WM (1999) Global patterns of plant invasions and the concept of invasibility. Ecology 80:152–153CrossRefGoogle Scholar
  35. Marco DE, Páez SA, Cannas SA (2002) Species invasiveness, habitat invasibility and species interactions: a modelling approach. Biol Invasions 4:193–205CrossRefGoogle Scholar
  36. Marquis MA (1975) Seed germination and storage under northern hardwood forests. Can J Res 5:478–484. doi:10.1139/x75-065 CrossRefGoogle Scholar
  37. Martinez-Ghersa MA, Ghersa CM (2006) The relationship of propagule pressure to invasion potential in plants. Euphytica 148:87–96CrossRefGoogle Scholar
  38. Melbourne BA, Cornell HV, Davies KF, Dugaw CJ, Elmendorf S, Freestone AL, Hall RJ, Harrison S, Hastings A, Holland M, Holyoak M, Lambrinos J, Moore K, Yokomizo H (2007) Invasion in a heterogeneous world: resistance, coexistence or hostile takeover? Ecol Lett 10:77–94CrossRefPubMedGoogle Scholar
  39. Moloney KA, Levin SA (1996) The effect of disturbance architecture on landscape-level population dynamics. Ecology 77:375–394CrossRefGoogle Scholar
  40. Nathan R, Sapir N, Trakhtenbrot A, Katul GG, Bohrer G, Otte M, Avissar R, Soons MB, Horn HS, Wikelski M, Levin SAL (2005) Long-distance biological transport processes through the air: can nature’s complexity be unfolded in silico? Divers Distrib 11:131–137CrossRefGoogle Scholar
  41. Nehrbass N, Winkler E, Müllerovà J, Pergl J, Pysek P, Perglovà I (2007) A simulation model of plant invasion: long-distance dispersal determines the pattern of spread. Biol Invasions 9:383–395Google Scholar
  42. Neubert MG, Caswell H (2000) Demography and dispersal: calculation and sensitivity analysis of invasion speed for structured populations. Ecology 81:1613–1628CrossRefGoogle Scholar
  43. Neubert GN, Kot M, Lewis MA (2000) Invasion speeds in fluctuating environments. Proc R Soc Lond B 267:1603–1610CrossRefGoogle Scholar
  44. Pairon M, Jonard M, Jacquemart AL (2006) Modeling seed dispersal of black cherry (Prunus serotina Ehrh.) an invasive tree: how microsatellites may help? Can J For Res 36:1385–1394CrossRefGoogle Scholar
  45. Pauchard A, Shea K (2006) Integrating the study of non-native plant invasions across spatial scales. Biol Invasions 8:399–413CrossRefGoogle Scholar
  46. Pausas JG, Keeley JE, Verdú M (2006) Inferring differential evolutionary processes of plant persistence traits in Northern Hemisphere Mediterranean fire-prone ecosystems. J Ecol 94:31–39CrossRefGoogle Scholar
  47. Pergl J, Hüls J, Perglovà I, Eckstein RL, Pyšek P, Otte A (2007) Population dynamics of Heracleum mantegazzianum. In: Pyšek P, Cock MJW, Nentwig W, Ravn HP (eds) SpecEcology and management of Giant hogweed (Heracleum mantegazzianum). CAB International, Wallingford, pp 92–111CrossRefGoogle Scholar
  48. Pimentel D, Zuniga R, Morrison D (2005) Update on the environmental and economic costs associated with alien-invasive species in the United States. Ecol Econ 52:273–288CrossRefGoogle Scholar
  49. Pontius RG (2000) Quantification error versus location error in comparison of categorical maps. Photogramm Eng Remote Sens 66:1011–1016Google Scholar
  50. Pyle L (1995) Effects of disturbance on herbaceous exotic plant species on the floodplain of the Potomac River. Am Midl Nat 134:244–254CrossRefGoogle Scholar
  51. Rejmánek M (2000) Invasive plants: approaches and predictions. Austral Ecol 25:497–506Google Scholar
  52. Renshaw E (1991) Modelling biological populations in space and time. Cambridge University Press, CambridgeGoogle Scholar
  53. Richardson DM, Pyšek P (2006) Plant invasions—merging the concepts of species invasiveness and community invasibility. Prog Phys Geogr 30:409–431CrossRefGoogle Scholar
  54. Richardson DM, Rejmánek M (2004) Invasive conifers: a global survey and predictive framework. Divers Distrib 10:321–331CrossRefGoogle Scholar
  55. Saether BE, Engen S, Lande R (1999) Finite metapopulation models with density-dependent migration and stochastic local dynamics. Proc R Soc Lond B 266:113–118CrossRefGoogle Scholar
  56. Sax DF, Stachowicz JJ, Brown JH, Bruno JF, Dawson MN, Gaines SD, Grosberg RK, Hastings A, Holt RD, Mayfield MM, O’Connor MI, Rice WR (2007) Ecological and evolutionary insights from species invasions. Trends Ecol Evol 22:465–471CrossRefPubMedGoogle Scholar
  57. Sebert-Cuvillier E, Paccaut F, Chabrerie O, Endels P, Goubet O, Decocq G (2007) Local population dynamics of an invasive tree species with a complex life-history cycle: a stochastic matrix model. Ecol Model 201:127–143CrossRefGoogle Scholar
  58. Sebert-Cuvillier E, Simon-Goyheneche V, Paccaut F, Chabrerie O, Goubet O, Decocq G (2008) Spatial spread of an alien tree species in a heterogeneous forest landscape: a spatially realistic simulation model. Landsc Ecol 23:787–801CrossRefGoogle Scholar
  59. Shea K, Chesson P (2002) Community ecology theory as a framework for biological invasions. Trends Ecol Evol 17:170–176CrossRefGoogle Scholar
  60. Skellam JG (1951) Random dispersal in theoretical populations. Biometrika 38:196–218PubMedGoogle Scholar
  61. Snyder RE (2003) How demographic stochasticity can slow biological invasions. Ecology 84:1333–1339CrossRefGoogle Scholar
  62. Snyder RE, Chesson P (2003) Local dispersal can facilitate coexistence in the presence of permanent spatial heterogeneity. Ecol Lett 6:301–309CrossRefGoogle Scholar
  63. Söndgerath D, Schröder B (2002) Population dynamics and habitat connectivity affecting spatial spread of populations—a simulation study. Landscape Ecol 17:57–70CrossRefGoogle Scholar
  64. Starfinger U (1991) Population biology of an invading tree species-Prunus serotina. In: Seitz A, Loeschcke V (eds) Species conservation: a population-biological approach. Birkhaüser, Basel, pp 171–184Google Scholar
  65. Starfinger U (1997) Introduction and naturalization of Prunus serotina in Central Europe. In: Brock JH, Wade M, Pyšek P, Green D (eds) Plant invasions: studies from North America and Europe. Backhuys, Leiden, pp 161–171Google Scholar
  66. Thuiller W, Midgley GF, Rouget M, Cowling RM (2006) Predicting patterns of plant species richness in megadiverse South Africa. Ecography 29:733–744CrossRefGoogle Scholar
  67. Trakhtenbrot A, Nathan R, Perry G, Richardson DM (2005) The importance of long-distance dispersal in biodiversity conservation. Divers Distrib 11:173–181CrossRefGoogle Scholar
  68. Verheyen K, Vanhellemont M, Stock T, Hermy M (2007) Predicting patterns of invasion by black cherry (Prunus serotina Ehrh.) in Flanders (Belgium) and its impact on the forest understorey community. Divers Distrib 13:487–497CrossRefGoogle Scholar
  69. Williamson M (1996) Biological invasions. Chapman and Hall, LondonGoogle Scholar
  70. Williamson M (1999) Invasions. Ecography 22:5–12CrossRefGoogle Scholar
  71. Wilson JRU, Richardson DM, Rouget M, Proches S, Amis MA, Henderson L, Thuiller W (2007) Residence time and potential range: crucial considerations in modelling plant invasions. Divers Distrib 13:11–22Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Emmanuelle Sebert-Cuvillier
    • 1
    • 2
  • Matthieu Simonet
    • 1
    • 2
  • Valérie Simon-Goyheneche
    • 1
    • 2
  • Frédéric Paccaut
    • 2
  • Olivier Goubet
    • 2
  • Guillaume Decocq
    • 1
  1. 1.Dynamiques des Systèmes Anthropisés (JE 2532), Laboratoire de Biodiversité végétale et fongiqueUniversité de Picardie Jules VerneAmiens CedexFrance
  2. 2.Laboratoire Amiénois de Mathématiques Fondamentales et Appliquées (UMR 6140 CNRS)Université de Picardie Jules VerneAmiens CedexFrance

Personalised recommendations