Advertisement

Biological Invasions

, Volume 12, Issue 4, pp 761–779 | Cite as

From the backyard to the backcountry: how ecological and biological traits explain the escape of garden plants into Mediterranean old fields

  • Audrey MarcoEmail author
  • Sébastien Lavergne
  • Thierry Dutoit
  • Valérie Bertaudiere-Montes
Original Paper

Abstract

To explain current ornamental plant invasions, or predict future ones, it is necessary to determine which factors increase the probability of an alien species becoming invasive. Here, we focused on the early phases of ornamental plant invasion in order to identify which plant features and cultivation practices may favor the escape of ornamental plants from domestic gardens to abandoned agricultural land sites in the Mediterranean Region. We used an original approach which consisted in visiting 120 private gardens in an urbanizing rural area of the French Mediterranean backcountry, and then visited surrounding old fields to determine which planted species had escaped out of the gardens. We built a database of 407 perennial ornamental alien species (most of which were animal-dispersed), and determined nineteen features that depicted the strength of species’ propagule pressure within gardens, the match between species requirements and local physical environment, and each species’ reproductive characteristics. Using standard and phylogenetic logistic regression, we found that ornamental alien plants were more likely to have escaped if they were planted in gardens’ margins, if they had a preference for dry soil, were tolerant to high-pH or pH-indifferent, and if they showed a capacity for clonal growth. Focusing only on animal-dispersed plants, we found that alien plants were more likely to have escaped if they were abundant in gardens and showed preference for dry soil. This suggests that gardening practices have a primary impact on the probability of a species to escape from cultivation, along with species pre-adaptation to local soil conditions, and capacity of asexual reproduction. Our results may have important implications for the implementation of management practices and awareness campaigns in order to limit ornamental plants to becoming invasive species in Mediterranean landscapes.

Keywords

Biological invasions Ornamental plants Propagule pressure Pre-adaptation Phylogenetic regression 

Notes

Acknowledgments

We are grateful to the municipality of Lauris for its contribution to this work and to Lauris’ inhabitants for allowing us to visit and study their properties. The authors also thank Jane Molofsky for language edition of the manuscript, as well as Marc Cadotte and two anonymous reviewers for proposing significant improvements to our manuscript. This work was supported by the Association for Development of Teaching and Research in the Provence Alpes Côte-d’Azur region.

References

  1. Alston KP, Richardson DM (2006) The roles of habitat features, disturbance, and distance from putative source populations in structuring alien plant invasions at the urban/wildland interface on the Cape Peninsula, South Africa. Biol Conserv 132:183–198. doi: 10.1016/j.biocon.2006.03.023 CrossRefGoogle Scholar
  2. Angiosperm Phylogeny Group (2003) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG II. Bot J Linn Soc 141:399–436. doi: 10.1046/j.1095-8339.2003.t01-1-00158.x CrossRefGoogle Scholar
  3. Bärtels A (1998) Le livre des arbres et arbustes. E. Ulmer, 320 ppGoogle Scholar
  4. Brickell C, Mioulane P (2004) Encyclopédie des 15000 plantes et fleurs de jardin. Larousse, 1080 ppGoogle Scholar
  5. Buckley YM, Anderson S, Cattarall CP, Corlett RT, Engel T, Gosper CR, Nathan R, Richardson DM, Setter M, Spiegel O, Vivan-Smith G, Voigt FA, Weir JES, Westcott DA (2006) Management of plant invasions mediated by frugivore interactions. J Appl Ecol 43:848–857. doi: 10.1111/j.1365-2664.2006.01210.x CrossRefGoogle Scholar
  6. Burnie G, Forrester S, Greig D, Guest S (2006) Botanica: Encyclopédie de botanique et d’horticulture. Mengès, Paris 970 ppGoogle Scholar
  7. Burt JW, Muir AA, Piovia-Scott J, Veblen KE, Chang AL, Grossman JD, Weiskel WH (2007) Preventing horticultural introductions of invasive plants: potential efficacy of voluntary initiatives. Biol Invasions 9:909–923. doi: 10.1007/s10530-007-9090-4 CrossRefGoogle Scholar
  8. Cadotte MW, Lovett-Doust J (2001) Ecological and taxonomic differences between native and introduced plants of southwestern Ontario. Ecoscience 8:230–238Google Scholar
  9. Cadotte MW, Murray BR, Lovett-Doust J (2006a) Evolutionary and ecological influences of plant invader success in the flora of Ontario. Ecoscience 13:388–395. doi: 10.2980/i1195-6860-13-3-388.1 CrossRefGoogle Scholar
  10. Cadotte MW, Murray BR, Lovett-Doust J (2006b) Ecological patterns and biological invasions: using regional species inventories in macroecology. Biol Invasions 8:809–821. doi: 10.1007/s10530-005-3839-4 CrossRefGoogle Scholar
  11. Collectif (1990) Grande encyclopédie des plantes & fleurs de jardin. Reader’s Digest, 608 ppGoogle Scholar
  12. De Belder J, Misonne X (1997) Le livre des baies, fruits sauvages pour parc et jardins. Racine, 192 ppGoogle Scholar
  13. Debussche M, Isenmann P (1990) Introduced and cultivated fleshy-fruited plants: consequences for a mutualistic Mediterranean plant-bird system. In: Di Castri F, Hansen AJ, Debussche M (eds) Biological invasions in Europe and the Mediterranean Basin. Kluwer Academic Pub, DordrechtGoogle Scholar
  14. Debussche M, Isenmann P (1994) Bird-dispersed seed rain and seedling establishment in patchy Mediterranean vegetation. Oikos 69:414–426. doi: 10.2307/3545854 CrossRefGoogle Scholar
  15. Debussche M, Lepart J (1992) Establishment of woody plants in mediterranean old fields: opportunity in space and time. Landscape Ecol 6:133–145. doi: 10.1007/BF00130026 CrossRefGoogle Scholar
  16. Dehnen-Schmutz K, Touza J, Perrings C, Williamson M (2007a) A century of the ornamental plant trade and its impact on invasion success. Divers Distrib 13:527–534. doi: 10.1111/j.1472-4642.2007.00359.x CrossRefGoogle Scholar
  17. Dehnen-Schmutz K, Touza J, Perrings C, Williamson M (2007b) The horticultural trade and ornamental plat invasions in Britain. Conserv Biol 21:224–231. doi: 10.1111/j.1523-1739.2006.00538.x CrossRefPubMedGoogle Scholar
  18. Denslow JS (1986) Fruit removal rates from aggregated and isolated bushes of the red elderberry Sambucus pubens. Can J Bot 65:1229–1235. doi: 10.1139/b87-170 CrossRefGoogle Scholar
  19. European Environment Agency Report (2006) Urban sprawl in Europe, the ignored challengeGoogle Scholar
  20. Fournier P (1947) Les quatre flores de France, Corse comprise: Générale, Alpine, Méditerranéenne, Littorale. LeChevalier, Paris, 1103 ppGoogle Scholar
  21. Foxcroft LC, Richardson DM, Wilson JRU (2008) Ornamental plants as invasive aliens: problems and solutions in Kruger National Park, South Africa. Environ Manage 41:32–51. doi: 10.1007/s00267-007-9027-9 CrossRefPubMedGoogle Scholar
  22. Gachet S, Vela E, Tatoni T (2004) BASECO: a floristic and ecological database of Mediterranean French flora. Biodivers Conserv 14:1023–1034. doi: 10.1007/s10531-004-8411-5 CrossRefGoogle Scholar
  23. Goodwin BJ, McAllister AJ, Fahrig J (1999) Predicting invasiveness of plant species based on biological information. Conserv Biol 13:422–426. doi: 10.1046/j.1523-1739.1999.013002422.x CrossRefGoogle Scholar
  24. Gosper CR, Stansbury CD, Vivian-Smith G (2005) Seed dispersal of fleshy-fruited invasive plants by birds: contributing factors and management options. Divers Distrib 11:549–558. doi: 10.1111/j.1366-9516.2005.00195.x CrossRefGoogle Scholar
  25. Hanspach J, Kühn I, Pyšek P, Boos E, Klotz S (2008) Correlates of naturalization and occupancy of introduced ornamentals in Germany. Perspect Plant Ecol Evol Syst 10:241–250. doi: 10.1016/j.ppees.2008.05.001 CrossRefGoogle Scholar
  26. Harvey PH, Pagel MD (1991) The comparative method in evolutionary biology. Oxford University Press, OxfordGoogle Scholar
  27. Hodkinson D, Thompson K (1997) Plant dispersal: the role of man. J Appl Ecol 34:1484–1496. doi: 10.2307/2405264 CrossRefGoogle Scholar
  28. Hulme PE (2004) Invasions, islands and impacts: a Mediterranean perspective. In: Palacios F (ed) Island ecology. Asociación Española de Ecología Terrestre, La Laguna, pp 337–361Google Scholar
  29. Huxley A (ed) (1992) The new royal horticultural society dictionary of gardening, vols 1–4. Macmillan, London 3353 ppGoogle Scholar
  30. Ihaca R, Gentleman R (1996) R: a language for data analysis and graphics. J Comput Graph Statist 5:299–314. doi: 10.2307/1390807 CrossRefGoogle Scholar
  31. Julien P (1999) Au-delà de l’urbanisation, l’étalement urbain caractérise la région. SUD INSEE l’essentiel 23:1–4Google Scholar
  32. Julve P (1998) Baseflor. Index botanique, écologique et chorologique de la flore de France. http://perso.wanadoo.fr/philippe.julve/catminat.htm
  33. Křivánek M, Pyšek P (2008) Forestry and horticulture as pathways of plant invasions: a database of alien woody plants in the Czech Republic. In: Tokarska-Guzik B, Brock JH, Brundu G, Child LE, Daehler CC, Pyšek P (eds) Plant invasions: human perception, ecological impacts and management. Backhuys Publisher, Leiden, pp 21–38Google Scholar
  34. Lake J, Leishman MR (2004) Invasion success of exotic plants in natural ecosystems: the role of disturbance, plant attributes and freedom from herbivores. Biol Conserv 117:215–226. doi: 10.1016/S0006-3207(03)00294-5 CrossRefGoogle Scholar
  35. Lambdon PW, Pyšek P, Basnou C, Hejda M, Arianoutsou M, Ess F, Jarošík V, Pergl J, Winter M, Anastasiu P, Andriopoulos P, Bazos I, Brundu G, Celesti-Grapow L, Chassot P, Delipetrou P, Josefsson M, Kark S, Klotz S, Kokkoris Y, Kühn I, Marchante H, Perglova I, Pino J, Vilà M, Zikos A, Roy D, Hulme PH (2008a) Alien flora of Europe: species diversity, temporal trends, geographical patterns and research needs. Preslia 80:101–149Google Scholar
  36. Lambdon PW, Lloret F, Hulme PE (2008b) How do introduction characteristics influence the invasion success of Mediterranean alien plants? Perspect Plant Ecol Evol Syst 10:143–159. doi: 10.1016/j.ppees.2007.12.004 CrossRefGoogle Scholar
  37. Lavergne S, Molofsky J (2007) Increased genetic variation and evolutionary potential drive the success of an invasive grass. Proc Natl Acad Sci USA 104:3883–3888. doi: 10.1073/pnas.0607324104 CrossRefPubMedGoogle Scholar
  38. Le Floc’h E (1991) Invasive plants of the Mediterranean Basin. In: Groves RH, DiCastri F (eds) Biogeography of Mediterranean invasions. Cambridge University Press, Cambridge, pp 67–80CrossRefGoogle Scholar
  39. Lloret F, Médail F, Brundu G, Camarda I, Moragues E, Rita J, Lambdon P, Hulme PE (2005) Species attributes and invasion success by alien plants on Mediterranean islands. Ecology 93:512–520. doi: 10.1111/j.1365-2745.2005.00979 CrossRefGoogle Scholar
  40. Lockwood JL, Cassey P, Blackburn T (2005) The role of propagule pressure in explaining species invasions. Trends Ecol Evol 20:223–228. doi: 10.1016/j.tree.2005.02.004 CrossRefPubMedGoogle Scholar
  41. Lonsdale WM (1999) Global patterns of plant invasions and the concept of invasibility. Ecology 80:1522–1536CrossRefGoogle Scholar
  42. Mack RN (1995) Understanding the processes of weed invasions: the influence of environmental stochasticity. In Stirton C (ed) Weeds in a changing world. British Crop Protection Council, Symposium Proceedings Number 64. Brighton, UK, pp 65–74Google Scholar
  43. Mack RN (2000) Cultivation fosters plant naturalization by reducing environmental stochasticity. Biol Invasions 2:111–122. doi: 10.1023/A:1010088422771 CrossRefGoogle Scholar
  44. Mack RN, Lonsdale WM (2001) Humans as global plant dispersers: getting more than we bargained for. Bioscience 51:95–102. doi: 10.1641/0006-3568(2001)051[0095:HAGPDG]2.0.CO;2 CrossRefGoogle Scholar
  45. Marco A, Dutoit T, Deschamps-Cottin M, Mauffrey J-F, Vennetier M, Bertaudière-Montes V (2008a) Gardens in urbanizing rural areas reveal an unexpected floral diversity related to housing density. C R Biol 331:452–465. doi: 10.1016/j.crvi.2008.03.007 CrossRefPubMedGoogle Scholar
  46. Marco A, Oliveau S, Pech N, Dutoit T, Bertaudière-Montes V (2008b) Garden plants dynamics at urban/fallow land interfaces: influence of local versus landscape factors. Salzburger Geogr Arbeiten 42:25–41Google Scholar
  47. Maron JM (2006) The relative importance of latitude matching and propagule pressure in the colonization success of an invasive forb. Ecography 29:819–826. doi: 10.1111/j.2006.0906-7590.04716.x CrossRefGoogle Scholar
  48. Martins EP, Garland TJ (1991) Phylogenetic analyses of the correlated evolution of continuous characters: a simulation study. Evolution Int J Org Evolution 45:534–557. doi: 10.2307/2409910 Google Scholar
  49. McNeely J (2001) Invasive species: a costly catastrophe for native biodiversity. Land Use Water Resour Res 1:1–10Google Scholar
  50. Meiners SJ, Pickett STA, Cadenasso ML (2002) Exotic plant invasions over 40 years of old field successions: community patterns and associations. Ecography 25:215–223. doi: 10.1034/j.1600-0587.2002.250209.x CrossRefGoogle Scholar
  51. Milbau A, Stout J (2008) Factors associated with alien plants transitioning from casual, to naturalized, to invasive. Conserv Biol 22:308–317. doi: 10.1111/j.1523-1739.2007.00877.x CrossRefPubMedGoogle Scholar
  52. Müller S (coord.) (2004) Plantes invasives en France. Muséum National d’Histoire Naturelle, Patrimoines naturels 62, Paris, 168 ppGoogle Scholar
  53. Mulvaney M (2001) The effect of introduction pressure on the naturalization of ornamental woody plants in south-eastern Australia. In: Groves RH, Panetta FD, Virtue JG (eds) Weed risk assessment. CSIRO Publishing, Collingwood, pp 186–193Google Scholar
  54. Myers J, Bazely DR (2003) Ecology and control of introduced plants: evaluating and responding to invasive plants. Ecology, biodiversity and conservation series. Cambridge University Press, 313 pGoogle Scholar
  55. Ne’eman G, Izhaki I (1996) Colonization in an abandoned East-Mediterranean vineyard. J Veg Sci 7:465–472. doi: 10.2307/3236294 CrossRefGoogle Scholar
  56. Nijs I, Milbau A, Seidlov’a L (2004) New methodologies for analyzing and predicting alien plant invasions from species and ecosystem traits. Weed Technol 18:1240–1245. doi: 10.1614/0890-037X(2004)018[1240:NMFAAP]2.0.CO;2 CrossRefGoogle Scholar
  57. Paradis E, Claude J (2002) Analysis of comparative data using generalized estimating equations. J Theor Biol 218:175–185. doi: 10.1006/jtbi.2002.3066 CrossRefPubMedGoogle Scholar
  58. Pauchard A, Shea K (2006) Integrating the study of non-native plant invasions across spatial scales. Biol Invasions 8:399–413. doi: 10.1007/s10530-005-6419-8 CrossRefGoogle Scholar
  59. Pimentel D, Zuniga R, Morrison D (2005) Update on the environmental and economic costs associated with alien-invasive species in the United States. Ecol Econ 52:273–288. doi: 10.1016/j.ecolecon.2004.07.013 CrossRefGoogle Scholar
  60. Prinzing A, Durka W, Klotz S, Brandl R (2002) Which species become aliens? Evol Ecol Res 4:385–405Google Scholar
  61. Pyšek P, Hulme PE (2005) Spatio-temporal dynamics of plant invasions: linking pattern to process. Ecoscience 12:302–315. doi: 10.2980/i1195-6860-12-3-302.1 CrossRefGoogle Scholar
  62. Pyšek P, Prach K, Šmilauer P (1995) Invasion success related to plant traits: an analysis of Czech alien flora. In: Pyšek P, Prach K, Rejmánek M, Wade M (eds) Plant invasions—general aspects and special problems. SPB Academic Publ, Amsterdam, pp 39–60Google Scholar
  63. Reichard SH, Hamilton CW (1997) Predicting invasions of woody plants introduced into North America. Conserv Biol 11:193–203. doi: 10.1046/j.1523-1739.1997.95473.x CrossRefGoogle Scholar
  64. Reichard SH, White P (2001) Horticulture as a pathway of invasive plant introductions in the United States. Bioscience 51:103–113. doi: 10.1641/0006-3568(2001)051[0103:HAAPOI]2.0.CO;2 CrossRefGoogle Scholar
  65. Richardson DM, Pyšek P, Rejmanek M, Barbour MG, Panetta FD, West CJ (2000a) Naturalization and invasion of alien plants: concepts and definitions. Divers Distrib 6:93–107. doi: 10.1046/j.1472-4642.2000.00083.x CrossRefGoogle Scholar
  66. Richardson DM, Allsopp N, D’Antonio CM, Milton SJ, Rejmanek M (2000b) Plant invasions—the role of mutualisms. Biol Rev Camb Philos Soc 75:65–93. doi: 10.1017/S0006323199005435 CrossRefPubMedGoogle Scholar
  67. Sargent S (1990) Neighbourhood effects on fruit removal by birds: a field experiment with Viburnum dentatum (Caprifoliaceae). Ecology 71:1289–1298. doi: 10.2307/1938266 CrossRefGoogle Scholar
  68. Stanley MC, Lill A (2001) Accessibility as a factor influencing frugivory by silvereyes (Zosterops lateralis): field comparisons with aviary experiments. Aust J Zool 49:171–182. doi: 10.1071/ZO00085 CrossRefGoogle Scholar
  69. Sullivan J, Timmins S, Williams P (2005) Movement of exotic plants into coastal native forests from gardens in northern New Zealand. N Z J Ecol 29:1–10Google Scholar
  70. Taylor BW, Irwin RE (2004) Linking economic activities to the distribution of exotic plants. Proc Natl Acad Sci USA 101:17725–17730. doi: 10.1073/pnas.0405176101 CrossRefPubMedGoogle Scholar
  71. Theoharides KA, Dukes JS (2007) Plant invasion across space and time: factors affecting non indigenous species success during four stages of invasion. New Phytol 176:256–273. doi: 10.1111/j.1469-8137.2007.02207.x CrossRefPubMedGoogle Scholar
  72. Thuiller W, Richardson DM, Pysek P, Midgley GF, Hughes GO, Rouget M (2005) Niche-based modelling as a tool for predicting the risk of alien plant invasions at a global scale. Glob Change Biol 11:2234–2250. doi: 10.1111/j.1365-2486.2005.001018.x CrossRefGoogle Scholar
  73. Venables WN, Ripley BD (2002) Modern applied statistics with S. Springer, BerlinGoogle Scholar
  74. Vitousek PM, D’Antonio CM, Loope LL, Rejmanek M, Westbrooks R (1997) Introduced species: a significant component of human caused global change. N Z J Ecol 21:1–16Google Scholar
  75. Webb CO, Donoghue MJ (2005) Phylomatic: tree assembly for applied phylogenetics. Mol Ecol Notes 5:181–183. doi: 10.1111/j.1471-8286.2004.00829.x CrossRefGoogle Scholar
  76. Weber E (2003) Invasive plant species of the world. A reference guide to environmental weeds. CABI Publishing, WallingfordGoogle Scholar
  77. Whelan J, Roberts DG, England PR, Ayre DA (2006) The potential for genetic contamination versus augmentation by native plants in urban gardens. Biol Conserv 128:493–500. doi: 10.1016/j.biocon.2005.10.016 CrossRefGoogle Scholar
  78. Williamson M, Fitter A (1996) The characters of successful invaders. Biol Conserv 78:163–170. doi: 10.1016/0006-3207(96)00025-0 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Audrey Marco
    • 1
    Email author
  • Sébastien Lavergne
    • 2
  • Thierry Dutoit
    • 3
  • Valérie Bertaudiere-Montes
    • 1
  1. 1.UMR 151 UP/IRD, Laboratoire Population-Environnement-DéveloppementUniversité de Provence Centre Saint-Charles Case 10Marseille Cedex 3France
  2. 2.UMR CNRS 5553 Laboratoire d’Ecologie AlpineUniversité Joseph FourierGrenoble Cedex 9France
  3. 3.UMR-CNRS-IRD 6116 IMEPUniversité d’Avignon, IUTAvignon Cedex 9France

Personalised recommendations