Skip to main content

Advertisement

Log in

Morphological and physiological traits in the success of the invasive plant Lespedeza cuneata

  • Dedicated to Wolfdieter Schenk on occasion of his 65th birthday
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

To better understand the strategies and mechanisms of invading plants in tallgrass prairie, physiological and morphological characteristics of the invasive Lespedeza cuneata were compared to the dominant and abundant natives Ambrosia psilostachya and Andropogon gerardii. Gas exchange, chlorophyll fluorescence, plant water status, and total and specific leaf area were quantified in the field for each species both throughout daily sampling periods and across the growing season. Total and specific leaf area (cm2 g−1 of leaves) exceeded that of native species and may allow L. cuneata to successfully establish and dominate in tallgrass prairie, aiding in both resource acquisition and competitive exclusion. Gas exchange traits (e.g. net photosynthesis, stomatal conductance, and water use efficiency) of L. cuneata did not exceed other species, but remained constant throughout the daily sampling periods. The daily consistency of net photosynthesis and other gas exchange traits for L. cuneata reveal characteristics of stress tolerance. The combination of these characteristics and strategies may assist in the invasion of L. cuneata and also provide insight into general mechanisms responsible for successful invasions into tallgrass prairie.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aerts R (1995) The advantages of being evergreen. Trends Ecol Evol 10:402–407. doi:10.1016/S0169-5347(00)89156-9

    Article  Google Scholar 

  • Baruch Z, Goldstein G (1999) Leaf construction cost, nutrient concentration, and net CO2 assimilation of native and invasive species in Hawaii. Oecologia 121:183–192. doi:10.1007/s004420050920

    Article  Google Scholar 

  • Baruch Z, Pattison RR, Goldstein G (2000) Responses to light and water availability of four invasive Melastomataceae in the Hawaiian islands. Int J Plant Sci 161:107–118. doi:10.1086/314233

    Article  PubMed  Google Scholar 

  • Brandon AL, Gibson DJ, Middleton BA (2004) Mechanisms for dominance in an early successional old field by the invasive non-native Lespedeza cuneata (Dum. Cours.) G. Don. Biol Invasions 6:483–493. doi:10.1023/B:BINV.0000041561.71407.f5

    Article  Google Scholar 

  • Brock FV, Crawford KC, Elliott RL, Cuperus GW, Stadler SJ, Johnson HL, Eilts MD (1995) The Oklahoma Mesonet: a technical overview. J Atmos Ocean Technol 12:5–19. doi:10.1175/1520-0426(1995)012<0005:TOMATO>2.0.CO;2

    Article  Google Scholar 

  • Cummings DC, Fuhlendorf SD, Engle DM (2007) Is altering grazing selectivity of invasive forage species with patch burning more effective than herbicide treatments? Rangeland Ecol Manag 60:253–260. doi:10.2111/1551-5028(2007)60[253:IAGSOI]2.0.CO;2

    Article  Google Scholar 

  • D’Antonio CM, Vitousek PM (1992) Biological invasions by exotic grasses, the grass fire cycles, and global change. Annu Rev Ecol Syst 23:63–87

    Google Scholar 

  • D’Antonio CM, Hughes RF, Vitousek PM (2001) Factors influencing dynamics of two invasive C4 grasses in seasonally dry Hawaiian woodlands. Ecology 82:89–104

    Google Scholar 

  • Davis MA, Grime JP, Thompson K (2000) Fluctuating resources in plant communities: a general theory of invasibility. J Ecol 88:528–534. doi:10.1046/j.1365-2745.2000.00473.x

    Article  Google Scholar 

  • Donnelly ED (1954) Some factors that affect palatability in sericea lespedeza, L. cuneata. Agron J 46:96–97

    Article  Google Scholar 

  • Durand LZ, Goldstein G (2001) Photosynthesis, photoinhibition, and nitrogen use efficiency in native and invasive tree ferns in Hawaii. Oecologia 126:345–354. doi:10.1007/s004420000535

    Article  Google Scholar 

  • Feng Y-L, Auge H, Ebeling S (2007) Invasive Buddleja davidii allocates more nitrogen to its photosynthetic machinery than five native woody species. Oecologia 153:501–510. doi:10.1007/s00442-007-0759-2

    Article  PubMed  Google Scholar 

  • Funk JL, Cleland EE, Suding KN, Zavaleta ES (2008) Restoration through reassembly: plant traits and invasion resistance. Trends Ecol Evol 23:695–703. doi:10.1016/j.tree.2008.07.013

    Article  PubMed  Google Scholar 

  • Garten CT, Classen AT, Norby RJ, Brice DJ, Weltzin JF, Souza L (2008) Role of N2-fixation in constructed old-field communities under different regimes of [CO2], temperature, and water availability. Ecosystems (N Y, Print) 11:125–137. doi:10.1007/s10021-007-9112-1

    Article  CAS  Google Scholar 

  • Harrington RA, Brown BJ, Reich PB (1989) Ecophysiology of exotic and native shrubs in southern Wisconsin I. Relationship of leaf characteristics, resource availability, and phenology to seasonal patterns of carbon gain. Oecologia 80:356–367. doi:10.1007/BF00379037

    Article  Google Scholar 

  • Heywood VH (1989) Patterns, extents and modes of invasions by terrestrial plants. In: Drake JA, Mooney HA (eds) Biological invasions: a global perspective. Wiley, Chichester, New York, pp 31–60

    Google Scholar 

  • Hill JP, Germino MJ, Wraith JM, Olson BE, Swan MB (2006) Advantages in water relations contribute to greater photosynthesis in Centaurea maculosa compared with established grasses. Int J Plant Sci 167:269–277. doi:10.1086/499505

    Article  Google Scholar 

  • Kalburtji KL, Mosjidis JA (1992) Effects of sericea lespedeza residues on warm-season grasses. J Range Manag 45:441–444. doi:10.2307/4002899

    Article  Google Scholar 

  • Kalburtji KL, Mosjidis JA, Mamolos AP (2001) Allelopathic plants. 2. Lespedeza cuneata. Allelopathy J 8:41–49

    Google Scholar 

  • Knapp AK, Bargmann N, Maragni LA, McAllister CA, Bremer DJ, Ham JM, Owensby CE (1999) Elevated CO2 and leaf longevity in the C4 grassland-dominant Andropogon gerardii. Int J Plant Sci 160:1057–1061. doi:10.1086/314202

    Article  PubMed  Google Scholar 

  • Lake JC, Leishman MR (2004) Invasion success of exotic in natural ecosystems: the role of disturbance, plant attributes and freedom from herbivores. Biol Conserv 117:215–226. doi:10.1016/S0006-3207(03)00294-5

    Article  Google Scholar 

  • Lambers H, Poorter H (1992) Inherent variation in growth rate between higher plants: a search for physiological causes and ecological consequences. Adv Ecol Res 23:187–261. doi:10.1016/S0065-2504(08)60148-8

    Article  CAS  Google Scholar 

  • Lodge DM (1993) Biological invasions: lessons for ecology. Trends Ecol Evol 8:133–137. doi:10.1016/0169-5347(93)90025-K

    Article  Google Scholar 

  • Mack RN (1996) Predicting the identity and fate of plant invaders: emergent and emerging approaches. Biol Conserv 78:107–121. doi:10.1016/0006-3207(96)00021-3

    Article  Google Scholar 

  • Mack RN, Simberloff D, Lonsdale WM, Evans H, Clout M, Bazzaz FA (2000) Biotic invasions: causes, epidemiology, global consequences, and control. Ecol Appl 10:689–710. doi:10.1890/1051-0761(2000)010[0689:BICEGC]2.0.CO;2

    Article  Google Scholar 

  • McAlpine KG, Jesson LK, Kubien DS (2008) Photosynthesis and water-use efficiency: a comparison between invasive (exotic) and non-invasive (native) species. Austral Ecol 33:10–19

    Google Scholar 

  • McDowell SCL (2002) Photosynthetic characteristics of invasive and noninvasive species of Rubus (Rosaceae). Am J Bot 89:1431–1438. doi:10.3732/ajb.89.9.1431

    Article  Google Scholar 

  • Nagel JM, Griffin KL (2004) Can gas-exchange characteristics help explain the invasive success of Lythrum salicaria? Biol Invasions 6:101–111. doi:10.1023/B:BINV.0000010125.93370.32

    Article  Google Scholar 

  • Ohlenbusch PD, Bidwell TG, Fick WH, Kilgore G, Scott W, Davidson J, Clubine S, Mayo J, Coffin M (2001) Sericea lespedeza: history, characteristics, and identification. Kansas State Extension MF-2408, Kansas State University Agricultural Experiment Station and Cooperative Extension Service, Manhattan

  • Owens MK (1996) The role of leaf and canopy-level gas exchange in the replacement of Quercus virginiana (Fagaceae) by Juniperus ashei (Cupressaceae) in semiarid savannas. Am J Bot 83:617–623. doi:10.2307/2445921

    Article  Google Scholar 

  • Pattison RR, Goldstein G, Ares A (1998) Growth, biomass allocation and photosynthesis of invasive and native Hawaiian rainforest species. Oecologia 117:449–459. doi:10.1007/s004420050680

    Article  Google Scholar 

  • Pfundel E (1998) Estimating the contribution of photosystem I to total leaf chlorophyll fluorescence. Photosynth Res 56:185–195. doi:10.1023/A:1006032804606

    Article  CAS  Google Scholar 

  • Reich PB, Walters MB, Ellsworth DS (1997) From tropics to tundra: global convergence in plant functioning. Proc Natl Acad Sci USA 94:13730–13734. doi:10.1073/pnas.94.25.13730

    Article  CAS  PubMed  Google Scholar 

  • Ritchie ME, Tilman D (1995) Responses of legumes to herbivores and nutrients during succession on a nitrogen-poor soil. Ecology 76:2648–2655. doi:10.2307/2265835

    Article  Google Scholar 

  • Sanders NJ, Weltzin JF, Crutsinger GM, Fitzpatrick MC, Nunez MA, Oswalt CM, Lane KE (2007) Insects mediate the effects of propagule supply and resource availability on a plant invasion. Ecology 88:2383–2391. doi:10.1890/06-1449.1

    Article  PubMed  Google Scholar 

  • Schutzenhofer MR, Knight TM (2007) Population-level effects of augmented herbivory on Lespedeza cuneata: implications for biological control. Ecol Appl 17:965–971. doi:10.1890/06-1282

    Article  PubMed  Google Scholar 

  • Smith MD, Knapp AK (2001) Physiological and morphological traits of exotic, invasive exotic, and native plant species in tallgrass prairie. Int J Plant Sci 162:785–792. doi:10.1086/320774

    Article  Google Scholar 

  • Turner CL, Knapp AK (1996) Responses of a C4 grass and three C3 forbs to variation in nitrogen and light in tallgrass prairie. Ecology 77:1738–1749. doi:10.2307/2265779

    Article  Google Scholar 

  • Vermeire LT, Bidwell TG, Stritzke J (2005) Ecology and management of sericea lespedeza. OSU Extension Facts F-2874, Oklahoma Cooperative Extension Service, Stillwater

    Google Scholar 

  • Vilà M, Weiner J (2004) Are invasive plant species better competitors than native plant species? Evidence from pair-wise experiments. Oikos 105:229–238. doi:10.1111/j.0030-1299.2004.12682.x

    Article  Google Scholar 

  • Vitousek PM, Dantonio CM, Loope LL, Rejmanek M, Westbrooks R (1997) Introduced species: a significant component of human-caused global change. N Z J Ecol 21:1–16

    Google Scholar 

  • von Caemmerer S, Farquhar GD (1981) Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. Planta 153:376–387. doi:10.1007/BF00384257

    Article  Google Scholar 

  • Westoby M (1998) A leaf-height-seed (LHS) plant ecology strategy scheme. Plant Soil 199:213–227. doi:10.1023/A:1004327224729

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Jonathan Kelly and Chris Stansberry for field work assistance and logistical support. We also thank two anonymous reviewers for suggestions that improved this manuscript. B. Allred thanks A. Allred for support and encouragement. This research was supported by the Oklahoma Agricultural Experiment Station and the National Research Initiative of the U.S. Department of Agriculture Cooperative State Research, Education and Extension Service, grant numbers 2003-35101-12928 and 2006-35320-17476.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brady W. Allred.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Allred, B.W., Fuhlendorf, S.D., Monaco, T.A. et al. Morphological and physiological traits in the success of the invasive plant Lespedeza cuneata . Biol Invasions 12, 739–749 (2010). https://doi.org/10.1007/s10530-009-9476-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-009-9476-6

Keywords

Navigation