Advertisement

Biological Invasions

, Volume 12, Issue 4, pp 739–749 | Cite as

Morphological and physiological traits in the success of the invasive plant Lespedeza cuneata

  • Brady W. Allred
  • Samuel D. Fuhlendorf
  • Thomas A. Monaco
  • Rodney E. Will
Dedicated to Wolfdieter Schenk on occasion of his 65th birthday

Abstract

To better understand the strategies and mechanisms of invading plants in tallgrass prairie, physiological and morphological characteristics of the invasive Lespedeza cuneata were compared to the dominant and abundant natives Ambrosia psilostachya and Andropogon gerardii. Gas exchange, chlorophyll fluorescence, plant water status, and total and specific leaf area were quantified in the field for each species both throughout daily sampling periods and across the growing season. Total and specific leaf area (cm2 g−1 of leaves) exceeded that of native species and may allow L. cuneata to successfully establish and dominate in tallgrass prairie, aiding in both resource acquisition and competitive exclusion. Gas exchange traits (e.g. net photosynthesis, stomatal conductance, and water use efficiency) of L. cuneata did not exceed other species, but remained constant throughout the daily sampling periods. The daily consistency of net photosynthesis and other gas exchange traits for L. cuneata reveal characteristics of stress tolerance. The combination of these characteristics and strategies may assist in the invasion of L. cuneata and also provide insight into general mechanisms responsible for successful invasions into tallgrass prairie.

Keywords

Competition Tolerance Sericea lespedeza Leaf area Photosynthesis Invasion Tallgrass prairie 

Notes

Acknowledgments

We thank Jonathan Kelly and Chris Stansberry for field work assistance and logistical support. We also thank two anonymous reviewers for suggestions that improved this manuscript. B. Allred thanks A. Allred for support and encouragement. This research was supported by the Oklahoma Agricultural Experiment Station and the National Research Initiative of the U.S. Department of Agriculture Cooperative State Research, Education and Extension Service, grant numbers 2003-35101-12928 and 2006-35320-17476.

References

  1. Aerts R (1995) The advantages of being evergreen. Trends Ecol Evol 10:402–407. doi: 10.1016/S0169-5347(00)89156-9 CrossRefGoogle Scholar
  2. Baruch Z, Goldstein G (1999) Leaf construction cost, nutrient concentration, and net CO2 assimilation of native and invasive species in Hawaii. Oecologia 121:183–192. doi: 10.1007/s004420050920 CrossRefGoogle Scholar
  3. Baruch Z, Pattison RR, Goldstein G (2000) Responses to light and water availability of four invasive Melastomataceae in the Hawaiian islands. Int J Plant Sci 161:107–118. doi: 10.1086/314233 CrossRefPubMedGoogle Scholar
  4. Brandon AL, Gibson DJ, Middleton BA (2004) Mechanisms for dominance in an early successional old field by the invasive non-native Lespedeza cuneata (Dum. Cours.) G. Don. Biol Invasions 6:483–493. doi: 10.1023/B:BINV.0000041561.71407.f5 CrossRefGoogle Scholar
  5. Brock FV, Crawford KC, Elliott RL, Cuperus GW, Stadler SJ, Johnson HL, Eilts MD (1995) The Oklahoma Mesonet: a technical overview. J Atmos Ocean Technol 12:5–19. doi: 10.1175/1520-0426(1995)012<0005:TOMATO>2.0.CO;2 CrossRefGoogle Scholar
  6. Cummings DC, Fuhlendorf SD, Engle DM (2007) Is altering grazing selectivity of invasive forage species with patch burning more effective than herbicide treatments? Rangeland Ecol Manag 60:253–260. doi: 10.2111/1551-5028(2007)60[253:IAGSOI]2.0.CO;2 CrossRefGoogle Scholar
  7. D’Antonio CM, Vitousek PM (1992) Biological invasions by exotic grasses, the grass fire cycles, and global change. Annu Rev Ecol Syst 23:63–87Google Scholar
  8. D’Antonio CM, Hughes RF, Vitousek PM (2001) Factors influencing dynamics of two invasive C4 grasses in seasonally dry Hawaiian woodlands. Ecology 82:89–104Google Scholar
  9. Davis MA, Grime JP, Thompson K (2000) Fluctuating resources in plant communities: a general theory of invasibility. J Ecol 88:528–534. doi: 10.1046/j.1365-2745.2000.00473.x CrossRefGoogle Scholar
  10. Donnelly ED (1954) Some factors that affect palatability in sericea lespedeza, L. cuneata. Agron J 46:96–97CrossRefGoogle Scholar
  11. Durand LZ, Goldstein G (2001) Photosynthesis, photoinhibition, and nitrogen use efficiency in native and invasive tree ferns in Hawaii. Oecologia 126:345–354. doi: 10.1007/s004420000535 CrossRefGoogle Scholar
  12. Feng Y-L, Auge H, Ebeling S (2007) Invasive Buddleja davidii allocates more nitrogen to its photosynthetic machinery than five native woody species. Oecologia 153:501–510. doi: 10.1007/s00442-007-0759-2 CrossRefPubMedGoogle Scholar
  13. Funk JL, Cleland EE, Suding KN, Zavaleta ES (2008) Restoration through reassembly: plant traits and invasion resistance. Trends Ecol Evol 23:695–703. doi: 10.1016/j.tree.2008.07.013 CrossRefPubMedGoogle Scholar
  14. Garten CT, Classen AT, Norby RJ, Brice DJ, Weltzin JF, Souza L (2008) Role of N2-fixation in constructed old-field communities under different regimes of [CO2], temperature, and water availability. Ecosystems (N Y, Print) 11:125–137. doi: 10.1007/s10021-007-9112-1 CrossRefGoogle Scholar
  15. Harrington RA, Brown BJ, Reich PB (1989) Ecophysiology of exotic and native shrubs in southern Wisconsin I. Relationship of leaf characteristics, resource availability, and phenology to seasonal patterns of carbon gain. Oecologia 80:356–367. doi: 10.1007/BF00379037 CrossRefGoogle Scholar
  16. Heywood VH (1989) Patterns, extents and modes of invasions by terrestrial plants. In: Drake JA, Mooney HA (eds) Biological invasions: a global perspective. Wiley, Chichester, New York, pp 31–60Google Scholar
  17. Hill JP, Germino MJ, Wraith JM, Olson BE, Swan MB (2006) Advantages in water relations contribute to greater photosynthesis in Centaurea maculosa compared with established grasses. Int J Plant Sci 167:269–277. doi: 10.1086/499505 CrossRefGoogle Scholar
  18. Kalburtji KL, Mosjidis JA (1992) Effects of sericea lespedeza residues on warm-season grasses. J Range Manag 45:441–444. doi: 10.2307/4002899 CrossRefGoogle Scholar
  19. Kalburtji KL, Mosjidis JA, Mamolos AP (2001) Allelopathic plants. 2. Lespedeza cuneata. Allelopathy J 8:41–49Google Scholar
  20. Knapp AK, Bargmann N, Maragni LA, McAllister CA, Bremer DJ, Ham JM, Owensby CE (1999) Elevated CO2 and leaf longevity in the C4 grassland-dominant Andropogon gerardii. Int J Plant Sci 160:1057–1061. doi: 10.1086/314202 CrossRefPubMedGoogle Scholar
  21. Lake JC, Leishman MR (2004) Invasion success of exotic in natural ecosystems: the role of disturbance, plant attributes and freedom from herbivores. Biol Conserv 117:215–226. doi: 10.1016/S0006-3207(03)00294-5 CrossRefGoogle Scholar
  22. Lambers H, Poorter H (1992) Inherent variation in growth rate between higher plants: a search for physiological causes and ecological consequences. Adv Ecol Res 23:187–261. doi: 10.1016/S0065-2504(08)60148-8 CrossRefGoogle Scholar
  23. Lodge DM (1993) Biological invasions: lessons for ecology. Trends Ecol Evol 8:133–137. doi: 10.1016/0169-5347(93)90025-K CrossRefGoogle Scholar
  24. Mack RN (1996) Predicting the identity and fate of plant invaders: emergent and emerging approaches. Biol Conserv 78:107–121. doi: 10.1016/0006-3207(96)00021-3 CrossRefGoogle Scholar
  25. Mack RN, Simberloff D, Lonsdale WM, Evans H, Clout M, Bazzaz FA (2000) Biotic invasions: causes, epidemiology, global consequences, and control. Ecol Appl 10:689–710. doi: 10.1890/1051-0761(2000)010[0689:BICEGC]2.0.CO;2 CrossRefGoogle Scholar
  26. McAlpine KG, Jesson LK, Kubien DS (2008) Photosynthesis and water-use efficiency: a comparison between invasive (exotic) and non-invasive (native) species. Austral Ecol 33:10–19Google Scholar
  27. McDowell SCL (2002) Photosynthetic characteristics of invasive and noninvasive species of Rubus (Rosaceae). Am J Bot 89:1431–1438. doi: 10.3732/ajb.89.9.1431 CrossRefGoogle Scholar
  28. Nagel JM, Griffin KL (2004) Can gas-exchange characteristics help explain the invasive success of Lythrum salicaria? Biol Invasions 6:101–111. doi: 10.1023/B:BINV.0000010125.93370.32 CrossRefGoogle Scholar
  29. Ohlenbusch PD, Bidwell TG, Fick WH, Kilgore G, Scott W, Davidson J, Clubine S, Mayo J, Coffin M (2001) Sericea lespedeza: history, characteristics, and identification. Kansas State Extension MF-2408, Kansas State University Agricultural Experiment Station and Cooperative Extension Service, ManhattanGoogle Scholar
  30. Owens MK (1996) The role of leaf and canopy-level gas exchange in the replacement of Quercus virginiana (Fagaceae) by Juniperus ashei (Cupressaceae) in semiarid savannas. Am J Bot 83:617–623. doi: 10.2307/2445921 CrossRefGoogle Scholar
  31. Pattison RR, Goldstein G, Ares A (1998) Growth, biomass allocation and photosynthesis of invasive and native Hawaiian rainforest species. Oecologia 117:449–459. doi: 10.1007/s004420050680 CrossRefGoogle Scholar
  32. Pfundel E (1998) Estimating the contribution of photosystem I to total leaf chlorophyll fluorescence. Photosynth Res 56:185–195. doi: 10.1023/A:1006032804606 CrossRefGoogle Scholar
  33. Reich PB, Walters MB, Ellsworth DS (1997) From tropics to tundra: global convergence in plant functioning. Proc Natl Acad Sci USA 94:13730–13734. doi: 10.1073/pnas.94.25.13730 CrossRefPubMedGoogle Scholar
  34. Ritchie ME, Tilman D (1995) Responses of legumes to herbivores and nutrients during succession on a nitrogen-poor soil. Ecology 76:2648–2655. doi: 10.2307/2265835 CrossRefGoogle Scholar
  35. Sanders NJ, Weltzin JF, Crutsinger GM, Fitzpatrick MC, Nunez MA, Oswalt CM, Lane KE (2007) Insects mediate the effects of propagule supply and resource availability on a plant invasion. Ecology 88:2383–2391. doi: 10.1890/06-1449.1 CrossRefPubMedGoogle Scholar
  36. Schutzenhofer MR, Knight TM (2007) Population-level effects of augmented herbivory on Lespedeza cuneata: implications for biological control. Ecol Appl 17:965–971. doi: 10.1890/06-1282 CrossRefPubMedGoogle Scholar
  37. Smith MD, Knapp AK (2001) Physiological and morphological traits of exotic, invasive exotic, and native plant species in tallgrass prairie. Int J Plant Sci 162:785–792. doi: 10.1086/320774 CrossRefGoogle Scholar
  38. Turner CL, Knapp AK (1996) Responses of a C4 grass and three C3 forbs to variation in nitrogen and light in tallgrass prairie. Ecology 77:1738–1749. doi: 10.2307/2265779 CrossRefGoogle Scholar
  39. Vermeire LT, Bidwell TG, Stritzke J (2005) Ecology and management of sericea lespedeza. OSU Extension Facts F-2874, Oklahoma Cooperative Extension Service, StillwaterGoogle Scholar
  40. Vilà M, Weiner J (2004) Are invasive plant species better competitors than native plant species? Evidence from pair-wise experiments. Oikos 105:229–238. doi: 10.1111/j.0030-1299.2004.12682.x CrossRefGoogle Scholar
  41. Vitousek PM, Dantonio CM, Loope LL, Rejmanek M, Westbrooks R (1997) Introduced species: a significant component of human-caused global change. N Z J Ecol 21:1–16Google Scholar
  42. von Caemmerer S, Farquhar GD (1981) Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. Planta 153:376–387. doi: 10.1007/BF00384257 CrossRefGoogle Scholar
  43. Westoby M (1998) A leaf-height-seed (LHS) plant ecology strategy scheme. Plant Soil 199:213–227. doi: 10.1023/A:1004327224729 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Brady W. Allred
    • 1
  • Samuel D. Fuhlendorf
    • 1
  • Thomas A. Monaco
    • 2
  • Rodney E. Will
    • 1
  1. 1.Natural Resource Ecology & ManagementOklahoma State UniversityStillwaterUSA
  2. 2.USDA-ARS Forage & Range Research LaboratoryLoganUSA

Personalised recommendations