Biological Invasions

, Volume 12, Issue 3, pp 625–631 | Cite as

Competition for food between the exotic wasp Vespula germanica and the native ant assemblage of NW Patagonia: evidence of biotic resistance?

  • Maité Masciocchi
  • Alejandro G. Farji-BrenerEmail author
  • Paula Sackmann
Original Paper


The success of a biological invasion may depend on the interactions between the invader and the native biota. However, little experimental evidence demonstrates whether local species can successfully compete with exotics. We experimentally determined the existence of competition for food between the exotic wasp Vespula germanica, one of the most recent Patagonian invaders, and the native ant assemblage. Both wasps and ants are generalist predators and scavengers, sharing habitat and food resources. We selected 30 sites within scrubland habitats where both ants and wasps were present. At each site, we placed containers with protein baits under three treatments: wasp exclusion, ant exclusion, and control (i.e., free access for wasps and ants). Ant exclusion increased the number of wasps (with regard to a control), but wasp exclusion did not affect ant abundance. This result suggests that native ants affect the foraging activity of exotic wasps but not vice versa. Aggressive behaviors and worker aggregation may explain the competitive advantage of ants. Ants bite wasp legs and massively aggregate on food sources, physically limiting the landing of wasps on baits. If the outcome of interactions at baits reported here influence wasp population-level parameters, this competitive interaction could be one of the factors explaining the low abundance of this exotic wasp in NW Patagonia in comparison with other invaded regions.


Agonistic behavior Biological invasions Dorymyrmex tener Yellowjackets 



This work was partially supported by a grant from the Agencia de Promoción Científica y Tecnológica—PICT 25314. Suggestions by M. Nuñez and two anonymous referees greatly improved the quality of the manuscript.


  1. Agosti D, Majer L, Alonso I, Schultz T (2000) Ants. Standard methods of measure and monitoring biodiversity. Smithsonian, WashingtonGoogle Scholar
  2. Akre R, Mac Donald P (1986) Biology, economic importance and control of yellow jackets. In: Vinson S (ed) Economic impact and control of social insects. Pergamon Press, New York, pp 353–412Google Scholar
  3. Akre R, Ramsay C, Gable A, Baird C, Standford A (1989) Additional range extension by the German yellow jacket Paravespula germanica (Fabricius), in North America (Hymenoptera: Vespidae). Pan-Pacific Entomol 65:79–88Google Scholar
  4. Archer ME (1998) The world distribution of the euro-asian species of Paravespula (Hymenoptera: Vespidae). Entomol Mon Mag 134:279–284Google Scholar
  5. Barr K, Moller H, Christmas E, Lyer P, Beggs J (1996) Impact of introduced common wasp (Vespula vulgaris) on experimentally placed mealworms in a New Zealand beech forest. Oecologia 105:266–270Google Scholar
  6. Beggs JR (2001) The ecological consequences of social wasp (Vespula sp.) invading an ecosystem that has an abundant carbohydrate resource. Biol Conserv 99:17–28. doi: 10.1016/S0006-3207(00)00185-3 CrossRefGoogle Scholar
  7. Beggs JR, Rees J (1999) Restructuring of lepidoptera communities by introduced Vespula wasps in a New Zealand beech forest. Oecologia 119:565–571. doi: 10.1007/s004420050820 CrossRefGoogle Scholar
  8. Correa M (1969–1998) Flora Patagónica, Vol 7. INTA, Buenos AiresGoogle Scholar
  9. D’Adamo P, Sackmann P, Lozada M, Corley J (2000) Local enhancement in the wasp Vespula germanica. Are visual cues all that matter? Insectes Soc 4:289–291. doi: 10.1007/PL00001717 CrossRefGoogle Scholar
  10. D’Adamo P, Sackmann P, Corley JC, Rabinovich M (2002) The potential distribution of German wasps (Vespula germanica) in Argentina. NZ J Zool 29:79–85Google Scholar
  11. Davis M, Grime J, Thompson K (2000) Fluctuating resource in plant communities: a general theory of invasibility. J Ecol 88:528–534. doi: 10.1046/j.1365-2745.2000.00473.x CrossRefGoogle Scholar
  12. de Rivera CE, Ruiz G, Hine A, Jivoff P (2005) Biotic resistance to invasion: native predator limits abundance and distribution of an introduced crab. Ecology 86:3364–3376. doi: 10.1890/05-0479 CrossRefGoogle Scholar
  13. DiVittorio C, Corbin J, D’Antonio C (2007) Spatial and temporal patterns of seed dispersal: an important determinant of grassland invasion. Ecol Appl 17:311–316. doi: 10.1890/06-0610 CrossRefPubMedGoogle Scholar
  14. Edwards R (1980) Social wasps, their biology and control. Rentokil Limited, East Grinstead, UKGoogle Scholar
  15. Elton CS (1958) The ecology of invasions by animals and plants. Methuen, LondonGoogle Scholar
  16. Farji-Brener AG, Corley J (1998) Successful invasions of hymenopterans insects into NW Patagonia. Ecologia Aust 8:237–249Google Scholar
  17. Farji-Brener AG, Corley J, Bettinelli J (2002) The effect of fire on ant communities in northwestern Patagonia: the importance of habitat structure and regional context. Div Dist 8:235–243. doi: 10.1046/j.1472-4642.2002.00133.x CrossRefGoogle Scholar
  18. Farji-Brener AG, Gianoli E, Molina-Montenegro M (2009) Small-scale disturbances spread along trophic chains: leaf-cutting ant nests, plants, aphids, and tending ants. Ecol Res 24:139–145. doi: 10.1007/s11284-008-0491-3 CrossRefGoogle Scholar
  19. Fridley JD, Stachowitcz JJ, Naeem S, Saex DF, Seabloom EW, Smith MD, Stohlgreb TJ, Tilman D, Von Holle B (2007) The invasion paradox: reconciling patter and process in species invasions. Ecology 88:3–17. doi: 10.1890/0012-9658(2007)88[3:TIPRPA]2.0.CO;2 CrossRefPubMedGoogle Scholar
  20. Harris RJ (1991) Diet of the wasps Vespula vulgaris and Vespula germanica in honeydew beech forest of the South Island. NZ J Zool 8:159–169Google Scholar
  21. Hölldobler B, Wilson EO (1990) The ants. Harvard University Press, CambridgeGoogle Scholar
  22. Holway D, Suarez A, Case T (2002a) Role of abiotic factors in governing susceptibility to invasion: a test with Argentine ants. Ecology 83:1610–1619CrossRefGoogle Scholar
  23. Holway D, Lach L, Suarez A, Tsutsui N, Case T (2002b) The causes and consequences of ant invasions. Annu Rev Ecol Syst 33:181–233. doi: 10.1146/annurev.ecolsys.33.010802.150444 CrossRefGoogle Scholar
  24. Keane R, Crawley M (2002) Exotic plant invasions and the enemy release hypothesis. Trends Ecol Evol 17:164–170. doi: 10.1016/S0169-5347(02)02499-0 CrossRefGoogle Scholar
  25. Kennedy T, Naeem S, Howe M, Knops J, Tilman D, Reich P (2002) Biodiversity as a barrier to ecological invasions. Nature 417:636–638. doi: 10.1038/nature00776 CrossRefPubMedGoogle Scholar
  26. Kusnesov N (1953) Las hormigas en los Parques Nacionales de la Patagonia y los problemas relacionados. Anales del museo Nahuel Huapi, Perito Francisco P. Moreno. Tomo III. Ministerio de Agricultura y Ganadería de la Nación. Administración de Parques Nacionales. Buenos AiresGoogle Scholar
  27. Kusnesov N (1959) La fauna de hormigas en el oeste de la Patagonia y Tierra del Fuego. Acta Zool Lilloana 17:321–401Google Scholar
  28. Levine MJ, Adler B, Yelenik G (2004) A meta-analysis of biotic resistance to exotic plant invasions. Ecol Lett 7:975–989. doi: 10.1111/j.1461-0248.2004.00657.x CrossRefGoogle Scholar
  29. Maron J, Vila M (2001) When do herbivores affect plant invasion? Evidence for the natural enemies and biotic resistance hypotheses. Oikos 95:361–373. doi: 10.1034/j.1600-0706.2001.950301.x CrossRefGoogle Scholar
  30. Parr C (2008) Dominant ants can control assemblage species richness in a South African savanna. J Anim Ecol 77:1191–1198. doi: 10.1111/j.1365-2656.2008.01450.x CrossRefPubMedGoogle Scholar
  31. Richards C, Bossdorf O, Muth N, Gurevitch J, Pigliucci M (2006) Jack of all trades, master of some? On the role of phenotypic plasticity in plant invasions. Ecol Lett 9:981–993. doi: 10.1111/j.1461-0248.2006.00950.x CrossRefPubMedGoogle Scholar
  32. Sackmann P (2006) Efectos de la variación temporal y los métodos de captura en la eficiencia de un muestreo de coleópteros en la reserva natural Loma del Medio, El Bolsón, Río Negro. Rev Soc Entom Arg 65:35–50Google Scholar
  33. Sackmann P, Corley JC (2007) Control of Vespula germanica (Hymenoptera: Vespidae) populations using toxic baits: bait attractiveness and pesticide efficacy. J Appl Entomol 131:630–636. doi: 10.1111/j.1439-0418.2007.01132.x CrossRefGoogle Scholar
  34. Sackmann P, Farji-Brener AG (2006) Effect of fire on ground beetles and ant assemblages along an environmental gradient in NW Patagonia: does habitat type matter? Ecoscience 13:360–371. doi: 10.2980/i1195-6860-13-3-360.1 CrossRefGoogle Scholar
  35. Sackmann P, D’Adamo P, Rabinovich M, Corley J (2000) Arthropod prey foraged by the German wasp (Vespula germanica) in NW Patagonia, Argentina. NZ Entomol 23:55–59Google Scholar
  36. Sackmann P, Rabinovich M, Corley J (2001) Successful removal of German yellow jackets (Hymenoptera Vespidae) by toxic baiting. J Econ Entomol 94:811–816CrossRefPubMedGoogle Scholar
  37. Sackmann P, Farji-Brener AG, Corley J (2008) The impact of an exotic social wasp (Vespula germanica) on the native arthropod community of north-west Patagonia, Argentina: an experimental study. Ecol Entomol 33:213–224. doi: 10.1111/j.1365-2311.2007.00952.x CrossRefGoogle Scholar
  38. Simberloff D (1989) Which insect introductions succeed and which fail? In: Drake J, Mooney H (eds) Biological invasions: a global perspective. Scope 37. Willey, Chichester, pp 61–72Google Scholar
  39. Spurr E (1995) Protein bait preferences of wasps (Vespula vulgaris and V. germanica) at Mt Thomas, Canterbury, New Zealand. NZ J Zool 22:281–289Google Scholar
  40. Underwood J (1997) Experiments in ecology. University Press, CambridgeGoogle Scholar
  41. Vilá M, Weiner J (2004) Are invasive plant species better competitors than native plant species?–Evidence from pair-wise experiments. Oikos 105:229–238. doi: 10.1111/j.0030-1299.2004.12682.x CrossRefGoogle Scholar
  42. Von Holle B (2005) Biotic resistance to invader establishment of a southern Appalachian plant community is determined by environmental conditions. J Ecol 93:16–26. doi: 10.1111/j.0022-0477.2004.00946.x CrossRefGoogle Scholar
  43. Von Holle B, Simberloff D (2005) Ecological resistance to biological invasions overwhelmed by propagule pressure. Ecology 86:3212–3218. doi: 10.1890/05-0427 CrossRefGoogle Scholar
  44. Williamson M (1996) Biological invasions. Chapman and Hall, LondonGoogle Scholar
  45. Willink A (1980) Sobre la presencia de Vespula germanica (Fabricius) en la Argentina (Hymenoptera: Vespidae). Neotropica 26:205–206Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Maité Masciocchi
    • 1
  • Alejandro G. Farji-Brener
    • 1
    Email author
  • Paula Sackmann
    • 1
  1. 1.Lab. Ecotono. CRUB-UNComa, INIBIOMA-CONICETBarilocheArgentina

Personalised recommendations