Biological Invasions

, Volume 12, Issue 3, pp 611–623 | Cite as

Do short-lived and long-lived alien plant species differ regarding the traits associated with their success in the introduced range?

  • Annamária Fenesi
  • Zoltán Botta-Dukát
Original Paper


In spite of the several studies trying to identify the biological traits that are generally associated with the success of alien plant species, only a few traits are consistently shown to be important. Dividing the species into meaningful sub-categories may improve our ability to distinguish successful alien species. We asked whether there are differences between short-lived and long-lived herbaceous aliens regarding the biological traits associated with their success in their introduced range. We used the source-area approach to answer the question by performing a comparative study with those Central-European herbaceous plant species which are invasive or non-invasive aliens in the United States. Biological traits used in the analysis were extracted from European databases. The significant traits (with one exception) conferred invasiveness for only one of the two life history groups. These results outline a particular combination of competition and colonization in both groups, although achieved in different ways. Short-lived invasive species, which are supposed to be good colonizers with effective reproduction and dispersal, are backed by some kind of competitive ability conferred by height; while in the case of competitive and persistent long-lived species, the successful aliens are equipped with traits that make them better colonizers than other perennial alien species (e.g., tolerance for a wide range of anthropogenic disturbance, dispersal through water).


Naturalization–invasion continuum Life span Source-area approach Central Europe Competitive ability Colonization Disturbance hypothesis 



We are grateful to L. Balogh, E. Illyés, G. Kröel-Dulay, E. Ruprecht, I. Somodi, I. M. Parker and two anonymous referees for their useful comments on the manuscript. We wish to thank Tim Hoelzle for improving the English of the manuscript. The research was supported by NKFP 3B/0050 and NKFP 00013/2005 projects (ZBD), a PhD scholarship from the Hungarian Ministry of Education (AF) and a scholarship (no. 2008/A/19 E) from Hungarian Academy of Sciences (AF).


  1. Aerts R (1999) Interspecific competition in natural plant communities: mechanisms, trade-offs and plant-soil feedbacks. J Exp Bot 50:29–37. doi: 10.1093/jexbot/50.330.29 CrossRefGoogle Scholar
  2. Baker HG (1955) Self-compatibility and establishment after long-distance dispersal. Evol Int J Org Evol 9:347–349. doi: 10.2307/2405656 Google Scholar
  3. Bretz F, Genz A, Hothorn LA (2001) On the numerical availability of multiple comparison procedures. Biom J 43:645–656. doi: 10.1002/1521-4036(200109)43:5<645::AID-BIMJ645>3.0.CO;2-F CrossRefGoogle Scholar
  4. Bretz F, Hothorn T, Westfall P (2004) Multcomp: multiple tests and simultaneous confidence intervals. R package version 0.4–8Google Scholar
  5. Cappuccino N, Carpenter D (2005) Invasive exotic plants suffer less herbivory than non-invasive exotic plants. Biol Lett 1:435–438. doi: 10.1098/rsbl.2005.0341 CrossRefPubMedGoogle Scholar
  6. Colautti RI, MacIsaac HJ (2004) A neutral terminology to define ‘invasive’ species. Divers Distrib 10:135–141. doi: 10.1111/j.1366-9516.2004.00061.x CrossRefGoogle Scholar
  7. Crawley MJ, Harvey PH, Purvis A (1996) Comparative ecology of the native and alien floras of the British Isles. Philos Trans R Soc Lond 351:1251–1259. doi: 10.1098/rstb.1996.0108 CrossRefGoogle Scholar
  8. Davis MA, Thompson K (2000) Eight ways to be a colonizer; two ways to be an invader. ESA Bull 81:226–230Google Scholar
  9. Desdevises Y, Legendre P, Azouzi L, Morand S (2003) Quantifying phylogenetically structured environmental variation. Evol Int J Org Evol 57:2647–2652Google Scholar
  10. Diniz-Filho JAF, De Sant’ana CER, Bini LM (1998) An eigenvector method for estimating phylogenetic inertia. Evol Int J Org Evol 52:1247–1262. doi: 10.2307/2411294 Google Scholar
  11. Dobson AJ (2001) An introduction to generalized linear models, 2nd edn. Chapman and Hall/CRC, London and Boca RatonGoogle Scholar
  12. Duyck PF, David P, Quilici S (2007) Can more K-selected species be better invaders? A case study of fruit flies in La Réunion. Divers Distrib 13:535–543CrossRefGoogle Scholar
  13. Fischer SF, Poschlod P, Beinlich B (1996) Experimental studies on the dispersal of plants and animals on sheep in calcareous grasslands. J Appl Ecol 33:1206–1222. doi: 10.2307/2404699 CrossRefGoogle Scholar
  14. Frankham R (2005) Resolving the genetic paradox in invasive species. Heredity 94:385. doi: 10.1038/sj.hdy.6800634 CrossRefPubMedGoogle Scholar
  15. Garnier E (1991) Resource capture, biomass allocation and growth in herbaceous plants. Trends Ecol Evol 6:126–131. doi: 10.1016/0169-5347(91)90091-B CrossRefGoogle Scholar
  16. Goodwin BJ, McAllister AJ, Fahrig L (1999) Predicting invasiveness of plant species based on biological information. Conserv Biol 13:422–426. doi: 10.1046/j.1523-1739.1999.013002422.x CrossRefGoogle Scholar
  17. Gray A (1996) Genetic diversity and its conservation in natural populations of plants. Biodivers Lett 3:71–80CrossRefGoogle Scholar
  18. Grime JP (1974) Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. Am Nat 111:1169–1194. doi: 10.1086/283244 CrossRefGoogle Scholar
  19. Hayes KR, Barry SC (2008) Are there any consistent predictors of invasion success? Biol Invasions 10:483–506. doi: 10.1007/s10530-007-9146-5 CrossRefGoogle Scholar
  20. Herron PM, Martine CT, Latimer AM, Leicht-Young SA (2007) Invasive plants and their ecological strategies: prediction and explanation of woody plant invasion in New England. Divers Distrib 13:633–644CrossRefGoogle Scholar
  21. Hierro JL, Maron JL, Callaway RM (2005) A biogeographical approach to plant invasions: the importance of studying exotics in their introduced and native range. J Ecol 93:5–15. doi: 10.1111/j.0022-0477.2004.00953.x CrossRefGoogle Scholar
  22. Inderjit, Cadotte MW, Colautti RI (2005) The ecology of biological invasions: past, present and future. In: Inderjit (ed) Invasive plants: ecological and agricultural aspects. Birkhäuser, Basel, pp 19–43CrossRefGoogle Scholar
  23. Jackson DA (1993) Stopping rules in principal components analysis: a comparison of heuristical and statistical approaches. Ecology 74:2204–2214. doi: 10.2307/1939574 CrossRefGoogle Scholar
  24. Kleyer M, Bekker RM, Knevel IC, Bakker JP, Thompson K, Sonnenschein M, Poschlod P, van Groenendael JM, Klimes L, Klimesová J, Klotz S, Rusch GM, Hermy M, Adriaens D, Boedeltje G, Bossuyt B, Endels P, Götzenberger L, Hodgson JG, Jackel A-K, Dannemann A, Kühn I, Kunzmann D, Ozinga WA, Römermann C, Stadler M, Schlegelmilch J, Steendam HJ, Tackenberg O, Wilmann B, Cornelissen JHC, Eriksson O, Garnier E, Fitter A, Peco B (2008) The LEDA traitbase: a database of life-history traits of the Northwest European flora. J Ecol 96:1266–1274. doi: 10.1111/j.1365-2745.2008.01430.x CrossRefGoogle Scholar
  25. Klimeš L, Klimešová J, Hendriks R, van Groenendael J (1997) Clonal plant architectures: a comparative analysis of form and function. In: de Kroon H, van Groenendael J (eds) The ecology and evolution of clonal plants, Backhuys Publishers, Leiden, pp 1–29. Cited Jan 2007
  26. Klotz S, Kühn I, Durka W (2002) BIOLFLOR—Eine Datenbank zu biologisch-ökologischen Merkmalen der Gefäßpflanzen in Deutschland. Schriftenreihe für Vegetationskunde 38: 1–334. Cited May 2006
  27. Kolar CS, Lodge DM (2001) Progress in invasion biology: predicting invaders. Trends Ecol Evol 16:199–204. doi: 10.1016/S0169-5347(01)02101-2 CrossRefPubMedGoogle Scholar
  28. Kühn I, Brandengurg M, Klotz S (2004) Why do alien species that reproduce in natural habitats occur more frequently? Divers Distrib 10:417–425. doi: 10.1111/j.1366-9516.2004.00110.x CrossRefGoogle Scholar
  29. Küster EC, Kühn I, Bruelheide H, Klotz S (2008) Trait interactions help explain plant invasion success in the German flora. J Ecol 96:860–868. doi: 10.1111/j.1365-2745.2008.01406.x CrossRefGoogle Scholar
  30. Lake JC, Leishman MR (2004) Invasion success of exotic plants in natural ecosystems: the role of disturbance, plant attributes and freedom from herbivores. Biol Conserv 117:215–226. doi: 10.1016/S0006-3207(03)00294-5 CrossRefGoogle Scholar
  31. Lonsdale WM (1999) Global patterns of plant invasions and the concept of invisibility. Ecology 80:1522–1536CrossRefGoogle Scholar
  32. Lososová Z, Chytry M, Kühn I, Hájek O, Horáková V, Pyšek P, Tichy L (2006) Patterns of plant traits in annual vegetation of man-made habitats in Central Europe. Perspect Plant Ecol Evol Syst 8:69–81. doi: 10.1016/j.ppees.2006.07.001 CrossRefGoogle Scholar
  33. Matthies D, Brauer I, Maibom W, Tscharntke T (2004) Population size and the risk of local extinction: empirical evidence from rare plants. Oikos 105:481–488. doi: 10.1111/j.0030-1299.2004.12800.x CrossRefGoogle Scholar
  34. Mitchell CE, Power AG (2003) Release of invasive plants from fungal and viral pathogens. Nature 421:625–627. doi: 10.1038/nature01317 CrossRefPubMedGoogle Scholar
  35. Pannell JR, Barrett SCH (1998) Baker’s law revisited: reproductive assurance in a metapopulation. Evol Int J Org Evol 52:657–668. doi: 10.2307/2411261 Google Scholar
  36. Pianka ER (1970) On r- and K-selection. Am Nat 104:592–597. doi: 10.1086/282697 CrossRefGoogle Scholar
  37. Prinzing A, Durka W, Klotz S, Brandl R (2002) Which species become aliens? Evol Ecol Res 4:385–405Google Scholar
  38. Pyšek P (1997) Clonality and plant invasions: can a trait make a difference? In: de Kroon H, van Groenendael J (eds) The ecology and evolution of clonal plants. Backhuys Publishers, Leiden, pp 405–427Google Scholar
  39. Pyšek P, Jarošík V (2005) Residence time determines the distribution of alien plants. In: Inderjit (ed) Invasive plants: ecological and agricultural aspects. Birkhäuser, Basel, pp 77–96Google Scholar
  40. Pyšek P, Richardson DM (2007) Traits associated with invasiveness in alien plants: where do we stand? In: Nentwig W (ed) Biological invasions, ecological studies 193. Springer, Berlin and Heidelberg, pp 97–126Google Scholar
  41. Pyšek P, Mándák B, Francírková T, Prach K (2001) Persistence of stout clonal herbs as invaders in the landscape: a field test of historical records. In: Brundu G, Brock J, Camarda I, Child L, Wade M (eds) Plant invasion: species ecology and ecosystem management. Backhuys Publishers, Leiden, pp 235–244Google Scholar
  42. Pyšek P, Richardson DM, Rejmánek M, Webster GL, Williamson M, Kirschner J (2004a) Alien plants in checklists and floras: towards better communication between taxonomists and ecologists. Taxon 53:131–143. doi: 10.2307/4135498 CrossRefGoogle Scholar
  43. Pyšek P, Richardson DM, Williamson M (2004b) Predicting and explaining plant invasions through analysis of source area floras: some critical considerations. Divers Distrib 10:179–187CrossRefGoogle Scholar
  44. Radosevich SR, Stubbs MM, Ghersa CM (2003) Plant invasion—process and patterns. Weed Sci 51:254–259. doi: 10.1614/0043-1745(2003)051[0254:PIPAP]2.0.CO;2 CrossRefGoogle Scholar
  45. R Development Core Team (2008) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. ISBN 3-900051-07-0, URL
  46. Rejmánek M, Richardson DM (1996) What attributes make some plant species more invasive? Ecology 77:1655–1661. doi: 10.2307/2265768 CrossRefGoogle Scholar
  47. Rejmánek M, Richardson DM, Pyšek P (2005) Plant invasions and invasibility of plant communities. In: van der Maarel E (ed) Vegetation ecology. Blackwell Publishing Ltd, Oxford, pp 332–355Google Scholar
  48. Richardson DM, Pyšek P, Rejmánek M, Barbour MG, Panetta FD, West CJ (2000) Naturalization and invasion of alien plants: concepts and definitions. Divers Distrib 6:93–107. doi: 10.1046/j.1472-4642.2000.00083.x CrossRefGoogle Scholar
  49. Schippers P, van Groenendael JM, Vleeshouwers LM, Hunt R (2001) Herbaceous plant strategies in disturbed habitats. Oikos 95:198–210. doi: 10.1034/j.1600-0706.2001.950202.x CrossRefGoogle Scholar
  50. Seabloom EW, Harpole WS, Reichman OJ, Tilman D (2003) Invasion, competitive dominance, and resource use by exotic and native California grassland species. Proc Natl Acad Sci USA 100:13384–13389. doi: 10.1073/pnas.1835728100 CrossRefPubMedGoogle Scholar
  51. Sun M, Ritland K (1998) Mating system of yellow starthistle (Centaurea solstitialis), a successful colonizer in North America. Heredity 80:225–232. doi: 10.1046/j.1365-2540.1998.00290.x CrossRefGoogle Scholar
  52. Swearingen J (2006) WeedUS: database of plants invading natural areas in the United States. Cited Nov 2006
  53. Thébaud C, Simberloff D (2001) Are plants really larger in their introduced ranges? Am Nat 157:231–236. doi: 10.1086/318635 CrossRefPubMedGoogle Scholar
  54. United States Department of Agriculture (USDA), Natural Resource Conservation Service (2001) The PLANTS database, National Plant Data Center, Baton Rouge, Louisiana. Cited May 2006
  55. van Kleunen M, Johnson SD (2007) Effects of self-compatibility on the distribution range of invasive European plants in North America. Conserv Biol 21:1537–1544. doi: 10.1111/j.1523-1739.2007.00765.x PubMedGoogle Scholar
  56. Westfall P (1997) Multiple testing of general contrasts using logical constraints and correlations. J Am Stat Assoc 92:299–306. doi: 10.2307/2291474 CrossRefGoogle Scholar
  57. Williamson M (1996) Biological invasions, 1st edn. Chapman and Hall, LondonGoogle Scholar
  58. Williamson MH, Fitter A (1996) The characters of successful invaders. Biol Conserv 78:163–170. doi: 10.1016/0006-3207(96)00025-0 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Department of Plant Taxonomy and EcologyEötvös Loránd UniversityBudapestHungary
  2. 2.Institute of Ecology and BotanyHungarian Academy of SciencesVácrátótHungary

Personalised recommendations