Biological Invasions

, Volume 11, Issue 10, pp 2401–2414 | Cite as

Niche based distribution modelling of an invasive alien plant: effects of population status, propagule pressure and invasion history

  • Stefan Dullinger
  • Ingrid Kleinbauer
  • Johannes Peterseil
  • Manfred Smolik
  • Franz Essl
Original Paper


Forecasting the spatial spread of invasive species is important to inform management planning. Niche-based species distribution models offer a well-developed framework for assessing the potential range of species. However, these models assume equilibrium between the species’ distribution and its ecological requirements. During range expansion, invasive species are not in such equilibrium due to both dispersal limitation and frequent casual occurrence in sites unsuitable to persistent populations. In this article we use the example of the invasive annual plant Ambrosia artemisiifolia in Austria to evaluate if model accuracy can be enhanced in such non-equilibrium situations by taking account of propagule pressure and by restricting model calibration to naturalized populations. Moreover, we test if model accuracy increases during invasion history using distribution data from 1984 to 2005. The results suggest that models calibrated with naturalized populations are much more accurate than those based on the total set of records. Proxies of propagule pressure slightly but significantly improve goodness of fit, accuracy, and Type I and II error rates of models calibrated with all available records but have less consistent effects on models of naturalized populations. Model accuracy did not increase during the recent invasion history, probably because the species is still far from an equilibrium distribution. We conclude that even a coarse assessment of population status with records of invasive species delivers important information for predictive modelling and that proxies of propagule pressure should be included into such models at least during early to intermediate stages of the invasion history.


Alien plants Ambrosia artemisiifolia L. Invasion Naturalization Propagule pressure Species distribution models 



Autologistic variable


Area under the receiver operating curve


Percentage area of calcareous substrates




Digital elevation model


Floristic Mapping of Austria


Generalized Additive Model


Gradient Boosting Machines


Generalized Linear Model


Invasive alien species


Percentage area of human settlements and agricultural fields


Precipitation sum of the winter months


Length of major streets






Mean monthly temperature of July



This work has been partially financed by funds from the Austrian research programme AUSTROCLIM. We are grateful to Chris Randin for providing R software, and to H. Niklfeld, L. Schratt-Ehrendorfer and T. Englisch for access to the data of the project ‘Mapping the Flora of Austria’. Valuable distribution data have been provided by numerous other colleagues.


  1. Araújo MB, Pearson RG, Thuiller W, Erhard M (2005) Validation of species-climate impact models under climate change. Glob Change Biol 11:1504–1513. doi:10.1111/j.1365-2486.2005.01000.x CrossRefGoogle Scholar
  2. Aubrecht P (1998) Corine Landcover Österreich. Vom Satellitenbild zum digitalen Bodenbedeckungsdatensatz. Umweltbundesamt, WienGoogle Scholar
  3. Augustin NH, Mugglestone MA, Buckland ST (1996) An autologistic model for the spatial distribution of wildlife. J Appl Ecol 33:339–347. doi:10.2307/2404755 CrossRefGoogle Scholar
  4. Austin M (2002) Spatial prediction of species distribution: an interface between ecological theory and statistical modelling. Ecol Modell 157:101–118. doi:10.1016/S0304-3800(02)00205-3 CrossRefGoogle Scholar
  5. Bassett IJ, Crompton CW (1975) The biology of Canadian weeds. 11. Ambrosia artemisiifolia L. and A. psilostachya DC. Can J Plant Sci 55:463–476.Google Scholar
  6. Bivand R, Anselin L, Berke O et al (2006) spdep: Spatial dependence: weighting schemes, statistics and models. R-package version 0.3–3.2.
  7. Bossenbroek JM, Kraft CE, Nekola JC (2001) Prediction of long-distance dispersal using gravity models: zebra mussel invasion of inland lakes. Ecol Appl 11:1778–1788. doi:10.1890/1051-0761(2001)011[1778:POLDDU]2.0.CO;2 CrossRefGoogle Scholar
  8. Brandes D, Nitzsche J (2007) Verbreitung, Ökologie und Soziologie von Ambrosia artemisiifolia L. in Mitteleuropa. Tuexenia 27:167–194Google Scholar
  9. Broennimann O, Treier UA, Müller-Schärer H et al (2007) Evidence of climatic niche shift during biological invasion. Ecol Lett 10:701–709. doi:10.1111/j.1461-0248.2007.01060.x CrossRefPubMedGoogle Scholar
  10. Callaway RM, Aschehoug ET (2000) Invasive plants versus their new and old neighbors: a mechanism for exotic invasion. Science 290:521–523. doi:10.1126/science.290.5491.521 CrossRefPubMedGoogle Scholar
  11. Castro SA, Figueroa JA, Muñoz-Schick M, Jaksic FM (2005) Minimum residence time, biogeographical origin, and life cycle as determinants of the geographical extent of naturalized plants in continental Chile. Divers Distrib 11:183–191. doi:10.1111/j.1366-9516.2005.00145.x CrossRefGoogle Scholar
  12. Chauvel B, Dessaint F, Cardinal-Legrand C, Bretagnolle F (2006) The historical spread of Ambrosia artemisiifolia L. in France from herbarium records. J Biogeogr 33:665–673. doi:10.1111/j.1365-2699.2005.01401.x CrossRefGoogle Scholar
  13. Clark JS, Carpenter SR, Barber M et al (2001) Ecological forecasts: an emerging imperative. Science 293:657–660. doi:10.1126/science.293.5530.657 CrossRefPubMedGoogle Scholar
  14. Colautti RI, Grigorovich IA, MacIsaac HJ (2006) Propagule pressure: a null model for biological invasions. Biol Invasions 8:1023–1037. doi:10.1007/s10530-005-3735-y CrossRefGoogle Scholar
  15. Dirnböck T, Dullinger S (2004) Habitat distribution models, spatial autocorrelation, functional traits and dispersal capacity of alpine plant species. J Veg Sci 15:77–84. doi:10.1658/1100-9233(2004)015[0077:HDMSAF]2.0.CO;2 CrossRefGoogle Scholar
  16. Dullinger S, Dirnböck T, Grabherr G (2004) Modelling climate change driven treeline shifts: relative effects of temperature increase, dispersal and invisibility. J Ecol 92:241–252. doi:10.1111/j.0022-0477.2004.00872.x CrossRefGoogle Scholar
  17. Elith J, Graham CH, Anderson RP et al (2006) Novel methods improve predictions of species’ distributions from occurrence data. Ecography 29:129–151. doi:10.1111/j.2006.0906-7590.04596.x CrossRefGoogle Scholar
  18. Elton C (1958) The Ecology of invasions by animals and plants. University of Chicago Press, ChicagoGoogle Scholar
  19. Essl F, Rabitsch W (2002) Neobiota in Österreich. Umweltbundesamt, WienGoogle Scholar
  20. Fielding AH, Bell JF (1997) A review of methods for the assessment of prediction errors in conservation presence-absence models. Environ Conserv 24:38–49. doi:10.1017/S0376892997000088 CrossRefGoogle Scholar
  21. Foxcroft L, Rouget M, Richardson DM, Fadyen SM (2004) Reconstructing 50 years of Opuntia stricta invasion in the Kruger National Park, South Africa: environmental determinants and propagule pressure. Divers Distrib 10:427–437. doi:10.1111/j.1366-9516.2004.00117.x CrossRefGoogle Scholar
  22. Friedman JH (2001) Greedy function approximation: a gradient boosting machine. Ann Stat 29:1189–1232. doi:10.1214/aos/1013203451 CrossRefGoogle Scholar
  23. Genton BJ, Shykoff JA, Giraud T (2005) High genetic diversity in French invasive populations of common ragweed, Ambrosia artemisiifolia, as a result of multiple sources of introduction. Mol Ecol 14:4275–4285PubMedGoogle Scholar
  24. Geologische Bundesanstalt (1997) Geologische Karte 1:500.000 von Österreich. Geologische Bundesanstalt, WienGoogle Scholar
  25. Guisan A, Thuiller W (2005) Predicting species distributions: offering more than simple habitat models. Ecol Lett 8:993–1009. doi:10.1111/j.1461-0248.2005.00792.x CrossRefGoogle Scholar
  26. Guisan A, Zimmermann NE (2000) Predictive habitat distribution models in ecology. Ecol Modell 135:147–186. doi:10.1016/S0304-3800(00)00354-9 CrossRefGoogle Scholar
  27. Guisan A, Broennimann O, Engler R et al (2006) Using niche-based models to improve the sampling of rare species. Conserv Biol 20:501–511. doi:10.1111/j.1523-1739.2006.00354.x CrossRefPubMedGoogle Scholar
  28. Harrell FE (2001) Regression modeling strategies. Springer, New YorkGoogle Scholar
  29. Hastie T (2006) gam: Generalized Additive Models. R package version 0.97.
  30. Hierro JL, Maron JL, Callaway RM (2005) A biogeographical approach to plant invasions: the importance of studying exotics in their introduced and native range. J Ecol 93:5–15. doi:10.1111/j.0022-0477.2004.00953.x CrossRefGoogle Scholar
  31. Higgins SI, Clark JS, Nathan R et al (2003) Forecasting plant migration rates: managing uncertainty for risk assessment. J Ecol 91:341–347. doi:10.1046/j.1365-2745.2003.00781.x CrossRefGoogle Scholar
  32. Ibanez F, Grosjean P, Etienne M (2006) Pastecs: Package for Analysis of Space-Time Ecological Series. R package version 1.3–4.
  33. Kriticos DJ, Sutherst RW, Brown JR et al (2003) Climate change and the potential distribution of an invasive alien plant: Acacia nilotica ssp. indica in Australia. J Appl Ecol 40:111–124. doi:10.1046/j.1365-2664.2003.00777.x CrossRefGoogle Scholar
  34. Křivánek M, Pyšek P, Jarošík V (2006) Planting history and propagule pressure as predictors of invasion by woody species in a temperate region. Conserv Biol 20:1487–1498. doi:10.1111/j.1523-1739.2006.00477.x CrossRefPubMedGoogle Scholar
  35. Kurtto A, Lampinen R, Junikka L (2004) Atlas Florae Europaeae. Distribution of vascular plants in Europe. 13. Rosaceae (Spiraea to Fragaria, excl. Rubus). The Committee for Mapping the Flora of Europe & Societas Biologica Fennica Vanamo, HelsinkiGoogle Scholar
  36. Leathwick JR (1998) Are New Zealand's Notofagus species in equilibrium with their environment. J Veg Sci 9:719–732CrossRefGoogle Scholar
  37. Lee CE (2002) Evolutionary genetics of invasive species. Trends Ecol Evol 17:386–391. doi:10.1016/S0169-5347(02)02554-5 CrossRefGoogle Scholar
  38. Levine JM, D’Antonio CM (1999) Elton revisited: a review of evidence linking diversity and invasibility. Oikos 87:15–26. doi:10.2307/3546992 CrossRefGoogle Scholar
  39. Lichstein JW, Simons TR, Shriner SA, Franzreb KE (2002) Spatial autocorrelation and autoregressive models in ecology. Ecol Monogr 72:445–463Google Scholar
  40. Lobo JM, Jiménez-Valverde A, Real R (2008) AUC: a misleading measure of the performance of predictive distribution models. Glob Ecol Biogeogr 17:145–151. doi:10.1111/j.1466-8238.2007.00358.x CrossRefGoogle Scholar
  41. Lockwood JL, Cassey P, Blackburn T (2005) The role of propagule pressure in explaining species invasions. Trends Ecol Evol 20:223–228. doi:10.1016/j.tree.2005.02.004 CrossRefPubMedGoogle Scholar
  42. Maggini R, Lehmann A, Zimmermann NE, Guisan A (2006) Improving generalized regression analysis for the spatial prediction of forest communities. J Biogeogr 33:1729–1749. doi:10.1111/j.1365-2699.2006.01465.x CrossRefGoogle Scholar
  43. Maron JL, Vilà M, Bonmarco R et al (2004) Rapid evolution of an invasive plant. Ecol Monogr 74:261–280. doi:10.1890/03-4027 CrossRefGoogle Scholar
  44. Mercado-Silva N, Olden JD, Maxted JT et al (2006) Forecasting the spread of invasive rainbow smelt in the Laurentian great lakes region of North America. Conserv Biol 20:1740–1749. doi:10.1111/j.1523-1739.2006.00508.x CrossRefPubMedGoogle Scholar
  45. Moser D, Dullinger S, Englisch T et al (2005) Environmental determinants of vascular plant species richness in the Austrian Alps. J Biogeogr 32:1117–1127. doi:10.1111/j.1365-2699.2005.01265.x CrossRefGoogle Scholar
  46. Niklfeld H (1998) Mapping the flora of Austria and the eastern Alps. Rev Valdotaine Hist Naturelle 51(Suppl):53–62Google Scholar
  47. Peterson AT (2003) Predicting the geography of species’ invasions via ecological niche modelling. Q Rev Biol 74:419–433. doi:10.1086/378926 CrossRefGoogle Scholar
  48. Peterson AT (2005) Predicting potential geographic distributions of invading species. Curr Sci 89:9Google Scholar
  49. Peterson AT (2006) Uses and requirements of ecological niche models and related distributional models. Biodivers Inform 3:59–72Google Scholar
  50. Peterson AT, Papes M, Kluza DA (2003) Predicting the potential invasive distributions of four alien plant species in North America. Weed Sci 51:863–868. doi:10.1614/P2002-081 CrossRefGoogle Scholar
  51. Pulliam RH (1988) Sources, sinks, and population regulation. Am Nat 132:652–661. doi:10.1086/284880 CrossRefGoogle Scholar
  52. Pyšek P, Richardson DM (2006) The biogeography of naturalization in alien plants. J Biogeogr 33:2040–2050. doi:10.1111/j.1365-2699.2006.01578.x CrossRefGoogle Scholar
  53. R Development Core Team (2006) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, AustriaGoogle Scholar
  54. Richardson DM, Pyšek P, Rejmánek M et al (2000) Naturalization and invasion of alien plants: concepts and definitions. Divers Distrib 6:93–107. doi:10.1046/j.1472-4642.2000.00083.x CrossRefGoogle Scholar
  55. Ridgeway G (2006) gbm: Generalized Boosted Regression Models. R package version 1.5–7.
  56. Robertson MP, Villet MH, Palmer AR (2004) A fuzzy classification technique for predicting species’ distributions: applications using invasive alien plants and indigenous insects. Divers Distrib 10:461–474. doi:10.1111/j.1366-9516.2004.00108.x CrossRefGoogle Scholar
  57. Rouget M, Richardson DM (2003) Inferring process from pattern in plant invasions: a semimechanistic model incorporating propagule pressure and environmental factors. Am Nat 162:713–724. doi:10.1086/379204 CrossRefPubMedGoogle Scholar
  58. Rouget M, Richardson DM, Nel JL et al (2004) Mapping the potential ranges of major plant invaders in South Africa, Lesotho and Swaziland using climatic suitability. Divers Distrib 10:475–484. doi:10.1111/j.1366-9516.2004.00118.x CrossRefGoogle Scholar
  59. Shea K, Chesson P (2002) Community ecology theory as a framework for biological invasions. Trends Ecol Evol 17:170–176. doi:10.1016/S0169-5347(02)02495-3 CrossRefGoogle Scholar
  60. Sheppard AW, Shaw RH, Sforza R (2006) Top 20 environmental weeds for classical control in Europe: a review of opportunities, regulations and other barriers to adoption. Weed Res 46:93–117. doi:10.1111/j.1365-3180.2006.00497.x CrossRefGoogle Scholar
  61. Swets JA (1988) Measuring the accuracy of diagnostic systems. Science 240:1285–1292. doi:10.1126/science.3287615 CrossRefPubMedGoogle Scholar
  62. Taramarcaz P, Lambelet C, Clot B et al (2005) Ragweed (Ambrosia) progression and its health risks: will Switzerland resist this invasion? Swiss Med Wkly 135:538–548PubMedGoogle Scholar
  63. Thuiller W, Richardson DM, Pyšek P et al (2005) Niche-based modelling as a tool for predicting the risk of alien plant invasion at a global scale. Glob Change Biol 11:2234–2250. doi:10.1111/j.1365-2486.2005.001018.x CrossRefGoogle Scholar
  64. van Houwlingen JC, le Cessie S (1990) Predictive value of statistical models. Stat Med 8:1303–1325CrossRefGoogle Scholar
  65. von der Lippe M, Kowarik I (2007) Long-distance dispersal of plants by vehicles as a driver of plant invasions. Conserv Biol 21:986–996. doi:10.1111/j.1523-1739.2007.00722.x CrossRefGoogle Scholar
  66. Wayne P, Foster S, Connolly J et al (2002) Production of allergenic pollen by ragweed (Ambrosia artemisiifolia L.) is increased in CO2-enriched atmospheres. Ann Allergy Asthma Immunol 88:279–282PubMedCrossRefGoogle Scholar
  67. Weber E (2001) Current and potential ranges of three exotic Goldenrods (Solidago) in Europe. Conserv Biol 15:122–128. doi:10.1046/j.1523-1739.2001.99424.x Google Scholar
  68. Wintle BA, Bardos DC (2006) Modelling species-habitat relationships with spatially autocorrelated observation data. Ecol Appl 16:1945–1958. doi:10.1890/1051-0761(2006)016[1945:MSRWSA]2.0.CO;2 CrossRefPubMedGoogle Scholar
  69. Ziska LH, Caulfield FA (2000) Rising CO2 and pollen production of common ragweed (Ambrosia artemisiifolia), a known allergy-inducing species: implications for public health. Aust J Plant Physiol 27:893–898Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Stefan Dullinger
    • 1
    • 2
  • Ingrid Kleinbauer
    • 1
    • 2
  • Johannes Peterseil
    • 3
  • Manfred Smolik
    • 4
  • Franz Essl
    • 3
  1. 1.Vienna Institute for Nature Conservation and AnalysesViennaAustria
  2. 2.Faculty of Life SciencesUniversity of ViennaViennaAustria
  3. 3.Federal Environment AgencyViennaAustria
  4. 4.Faculty of PhysicsUniversity of ViennaViennaAustria

Personalised recommendations