Advertisement

Biological Invasions

, Volume 11, Issue 10, pp 2367–2385 | Cite as

Non-indigenous invasive bivalves as ecosystem engineers

  • Ronaldo Sousa
  • Jorge L. Gutiérrez
  • David C. Aldridge
Original Paper

Abstract

Several non-indigenous bivalve species have been colonising aquatic ecosystems worldwide, in some cases with great ecological and economic impacts. In this paper, we focus on the ecosystem engineering attributes of non-indigenous invasive bivalves (i.e., the capacities of these organisms to directly or indirectly affect the availability of resources to other species by physically modifying the environment). By reviewing the ecology of several invasive bivalves we identify a variety of mechanisms via which they modify, maintain and/or create habitats. Given the usually high densities and broad spatial distributions of such bivalves, their engineering activities can significantly alter ecosystem structure and functioning (e.g., changes in sediment chemistry, grain size, and organic matter content via bioturbation, increased light penetration into the water column due to filter feeding, changes in near bed flows and shear stress due to the presence of shells, provision of colonisable substrate and refuges by shells). In addition, changes in ecosystem structure and functioning due to engineering by invasive bivalves often have very large economic impacts. Given the worldwide spread of non-indigenous bivalves and the varied ways in which they physically modify habitats, their engineering effects should receive more serious consideration in restoration and management initiatives.

Keywords

Ecosystem engineers Non-indigenous bivalves Ecological impacts Economic impacts Ecosystem functioning Review 

Notes

Acknowledgments

Ronaldo Sousa is supported by a postdoctoral grant from the Portuguese Foundation for Science and Technology—FCT (SFRH/BPD/43570/2008). Special thanks to Clive Jones and Pedro Morais for helpful suggestions on the manuscript.

References

  1. Aldridge DC (2000) The impacts of dredging and weed cutting on a population of freshwater mussels (Bivalvia: Unionidae). Biol Conserv 95:247–257. doi: 10.1016/S0006-3207(00)00045-8 CrossRefGoogle Scholar
  2. Aldridge DC, Elliott P, Moggridge GD (2004) The recent and rapid spread of the zebra mussel (Dreissena polymorpha) in Great Britain. Biol Conserv 119:253–261. doi: 10.1016/j.biocon.2003.11.008 CrossRefGoogle Scholar
  3. Aldridge DC, Salazar M, Serna A et al (2008) Density-dependent effects of a new invasive false mussel, Mytilopsis trautwineana (Tryon 1866), on shrimp, Litopenaeus vannamei (Boone 1931), aquaculture in Colombia. Aquaculture 281:34–42. doi: 10.1016/j.aquaculture.2008.05.022 CrossRefGoogle Scholar
  4. Armonies W (2001) What an introduced species can tell us about the spatial extension of benthic populations. Mar Ecol Prog Ser 209:289–294. doi: 10.3354/meps209289 CrossRefGoogle Scholar
  5. Bastviken DTE, Caraco NF, Cole JJ (1998) Experimental measurements of zebra mussel (Dreissena polymorpha) impacts on phytoplankton community composition. Freshw Biol 39:375–386. doi: 10.1046/j.1365-2427.1998.00283.x CrossRefGoogle Scholar
  6. Bayne BL (1964) Primary and secondary settlement in Mytilus edulis L. (Mollusca). J Anim Ecol 33:513–523. doi: 10.2307/2569 CrossRefGoogle Scholar
  7. Beekey MA, McCabe DJ, Marsden JE (2004) Zebra mussels affect benthic predator foraging success and habitat choice on soft sediments. Oecologia 141:164–170. doi: 10.1007/s00442-004-1632-1 PubMedCrossRefGoogle Scholar
  8. Bertness MD, Grosholz E (1985) Population dynamics of the ribbed mussel, Geukensia demissa: the costs and benefits of an aggregated distribution. Oecologia 67:192–204. doi: 10.1007/BF00384283 CrossRefGoogle Scholar
  9. Bially A, MacIsaac HJ (2000) Fouling mussels (Dreissena spp.) colonize soft sediments in Lake Erie and facilitate benthic invertebrates. Freshw Biol 43:85–97. doi: 10.1046/j.1365-2427.2000.00526.x CrossRefGoogle Scholar
  10. Boltovskoy D, Correa N, Cataldo D et al (2006) Dispersion and ecological impact of the invasive freshwater bivalve Limnoperna fortunei in the Río de la Plata watershed and beyond. Biol Invasions 8:947–963. doi: 10.1007/s10530-005-5107-z CrossRefGoogle Scholar
  11. Borthagaray AI, Carranza A (2007) Mussels as ecosystem engineers: their contribution to species richness in a rocky littoral community. Acta Oecol 31:243–250. doi: 10.1016/j.actao.2006.10.008 CrossRefGoogle Scholar
  12. Branch GM, Steffani CN (2004) Can we predict the effects of alien species? A case-history of the invasion of South Africa by Mytilus galloprovincialis (Lamarck). J Exp Mar Biol Ecol 300:189–215. doi: 10.1016/j.jembe.2003.12.007 CrossRefGoogle Scholar
  13. Breitburg DL, Palmer MA, Loher T (1995) Larval distributions and the spatial patterns of settlement of an oyster reef fish: responses to flow and structure. Mar Ecol Prog Ser 125:45–60. doi: 10.3354/meps125045 CrossRefGoogle Scholar
  14. Byers JE (2002) Physical habitat attribute mediates biotic resistance to non-indigenous species invasion. Oecologia 130:146–156Google Scholar
  15. Byrnes JE, Reynolds PL, Stachowicz JJ (2007) Invasions and extinctions reshape coastal marine food webs. PLoS ONE 3:e295. doi: 10.1371/journal.pone.0000295 CrossRefGoogle Scholar
  16. Caraco NF, Cole JJ, Raymond PA et al (1997) Zebra mussel invasion in a large, turbid river: phytoplankton response to increased grazing. Ecology 78:588–602Google Scholar
  17. Carlton JT, Geller JB (1993) Ecological roulette: the global transport of non-indigenous marine organisms. Science 261:78–83. doi: 10.1126/science.261.5117.78 CrossRefGoogle Scholar
  18. Cohen AN, Carlton JT (1998) Accelerating invasion rate in a highly invaded estuary. Science 279:555–558. doi: 10.1126/science.279.5350.555 PubMedCrossRefGoogle Scholar
  19. Commito JA, Rusignuolo BR (2000) Structural complexity in mussel beds: the fractal geometry of surface topography. J Exp Mar Biol Ecol 255:133–152. doi: 10.1016/S0022-0981(00)00285-9 PubMedCrossRefGoogle Scholar
  20. Crooks JA (1996) The population ecology of an exotic mussel, Musculista senhousia, in a southern California bay. Estuaries 19:42–50. doi: 10.2307/1352650 CrossRefGoogle Scholar
  21. Crooks JA (1998) Habitat alteration and community-level effects of an exotic mussel, Musculista senhousia. Mar Ecol Prog Ser 162:137–152. doi: 10.3354/meps162137 CrossRefGoogle Scholar
  22. Crooks JA (2001) Assessing invader roles within changing ecosystems: historical and experimental perspectives on an exotic mussel in an urbanized lagoon. Biol Invasions 3:23–36. doi: 10.1023/A:1011404914338 CrossRefGoogle Scholar
  23. Crooks JA (2002) Characterizing ecosystem-level consequences of biological invasions: the role of ecosystem engineers. Oikos 97:153–166. doi: 10.1034/j.1600-0706.2002.970201.x CrossRefGoogle Scholar
  24. Crooks JA, Khim HS (1999) Architectural vs. biological effects of a habitat-altering, exotic mussel, Musculista senhousia. J Exp Mar Biol Ecol 240:53–75. doi: 10.1016/S0022-0981(99)00041-6 CrossRefGoogle Scholar
  25. Dame RF (1996) Ecology of marine bivalves: an ecosystem approach. CRS Press, New YorkGoogle Scholar
  26. Didžiulis V (2007) NOBANIS—invasive alien species fact sheet: Teredo navalis. From Online Database of the North European and Baltic Network on Invasive Alien Species—NOBANIS www.nobanis.org
  27. Dieterich A, Mörtl M, Eckmann R (2004) The effects of zebra mussels (Dreissena polymorpha) on the foraging success of eurasian perch (Perca fluviatilis) and ruffe (Gymnocephalus cernuus). Int Rev Hydrobiol 89:229–237. doi: 10.1002/iroh.200310693 CrossRefGoogle Scholar
  28. Dudas SE, Dower JF (2006) Reproductive ecology and dispersal potential of varnish clam Nuttallia obscurata, a recent invader in the Northeast Pacific Ocean. Mar Ecol Prog Ser 320:195–205. doi: 10.3354/meps320195 CrossRefGoogle Scholar
  29. Eckman JE, Nowell ARM (1984) Boundary skin friction and sediment transport about an animal-tube mimic. Sedimentology 31:851–862. doi: 10.1111/j.1365-3091.1984.tb00891.x CrossRefGoogle Scholar
  30. Escapa M, Isacch JP, Daleo P et al (2004) The distribution and ecological effects of the introduced pacific oyster Crassostrea gigas (Thunberg, 1793) in Northern Patagonia. J Shellfish Res 23:765–772Google Scholar
  31. Fernández M, Iribarne OO, Armstrong DA (1993) Habitat selection of young of the year Dungeness crab Cancer magister Dana and predation risk in intertidal habitats. Mar Ecol Prog Ser 92:171–177. doi: 10.3354/meps092171 CrossRefGoogle Scholar
  32. Fréchette M, Butman CA, Geyer WR (1989) The importance of boundary-layer flows in supplying phytoplankton to the benthic suspension feeder, Mytilus edulis L. Limnol Oceanogr 34:19–36Google Scholar
  33. Garci ME, Trigo JE, Pascual S et al (2007) Xenostrobus securis (Lamarck, 1819) (Mollusca: Bivalvia): first report of an introduced species in Galician waters. Aquacult Int 15:19–24. doi: 10.1007/s10499-006-9062-1 CrossRefGoogle Scholar
  34. Gosling E (2003) Bivalve molluscs: biology, ecology and culture. Fishing News Books, OxfordCrossRefGoogle Scholar
  35. Grosholz E (2002) Ecological and evolutionary consequences of coastal invasions. Trends Ecol Evol 17:22–27. doi: 10.1016/S0169-5347(01)02358-8 CrossRefGoogle Scholar
  36. Grosholz E (2005) Recent biological invasion may hasten invasional meltdown by accelerating historical introductions. Proc Natl Acad Sci USA 102:1088–1091. doi: 10.1073/pnas.0308547102 PubMedCrossRefGoogle Scholar
  37. Gutiérrez JL, Iribarne OO (1999) Role of Holocene beds of the stout razor clam Tagelus plebeius in structuring present benthic communities. Mar Ecol Prog Ser 85:213–228. doi: 10.3354/meps185213 CrossRefGoogle Scholar
  38. Gutiérrez JL, Iribarne OO (2004) Conditional function of habitat structure: an example from intertidal mudflats. Oecologia 139:572–582. doi: 10.1007/s00442-004-1533-3 PubMedCrossRefGoogle Scholar
  39. Gutiérrez JL, Jones CG, Strayer DL et al (2003) Mollusks as ecosystem engineers: the role of shell production in aquatic habitats. Oikos 101:79–90. doi: 10.1034/j.1600-0706.2003.12322.x CrossRefGoogle Scholar
  40. Hall RO, Dybdahl MF, Vanderloop MC (2006) Extremely high secondary production of introduced snails in rivers. Ecol Appl 16:1121–1131. doi: 10.1890/1051-0761(2006)016[1121:EHSPOI]2.0.CO;2 PubMedCrossRefGoogle Scholar
  41. Hastings A, Byers JE, Crooks JA et al (2007) Ecosystem engineering in space and time. Ecol Lett 10:153–164. doi: 10.1111/j.1461-0248.2006.00997.x PubMedCrossRefGoogle Scholar
  42. Huettel M, Gust G (1992) Impact of bioroughness on interfacial solute exchange in permeable sediments. Mar Ecol Prog Ser 89:253–267. doi: 10.3354/meps089253 CrossRefGoogle Scholar
  43. Jones CG, Lawton JH, Shachak M (1994) Organisms as ecosystem engineers. Oikos 69:373–386. doi: 10.2307/3545850 CrossRefGoogle Scholar
  44. Jones CG, Lawton JH, Shachak M (1997) Positive and negative effects of organisms as physical ecosystem engineers. Ecology 78:1946–1957CrossRefGoogle Scholar
  45. Karatayev AY, Burlakova LE, Padilla DK (1997) The effects of Dreissena polymorpha (Pallas) invasion on aquatic communities in Eastern Europe. J Shellfish Res 16:187–203Google Scholar
  46. Karatayev AY, Padilla DK, Minchin D et al (2007) Changes in global economies and trade: the potential spread of exotic freshwater bivalves. Biol Invasions 9:161–180. doi: 10.1007/s10530-006-9013-9 CrossRefGoogle Scholar
  47. Kimmerer WJ (2006) Response of anchovies dampens effects of the invasive bivalve Corbula amurensis on the San Francisco Estuary foodweb. Mar Ecol Prog Ser 324:207–218. doi: 10.3354/meps324207 CrossRefGoogle Scholar
  48. Kolar CS, Lodge DM (2002) Ecological predictions and risk assessment for alien fishes in North America. Science 298:1233–1236. doi: 10.1126/science.1075753 PubMedCrossRefGoogle Scholar
  49. Kreeger DA, Newell RIE (2001) Seasonal utilization of different seston carbon sources by the ribbed mussel, Geukensia demissa (Dillwyn) in a mid-Atlantic salt marsh. J Exp Mar Biol Ecol 260:71–91. doi: 10.1016/S0022-0981(01)00242-8 PubMedCrossRefGoogle Scholar
  50. Kushner RB, Hovel KA (2006) Effects of native predators and eelgrass habitat structure on the introduced Asian mussel Musculista senhousia (Benson in Cantor) in southern California. J Exp Mar Biol Ecol 332:166–177. doi: 10.1016/j.jembe.2005.11.011 CrossRefGoogle Scholar
  51. Laine AO, Mattila J, Lehikoinen A (2006) First record of the brackish water dreissenid bivalve Mytilopsis leucophaeata in the northern Baltic Sea. Aquat Invasions 1:38–41CrossRefGoogle Scholar
  52. Lenihan HS (1999) Physical–biological coupling on oyster reefs: how habitat form influences individual performance. Ecol Monogr 69:251–275Google Scholar
  53. Lockwood JL, Cassey P, Blackburn T (2005) The role of propagule pressure in explaining species invasions. Trends Ecol Evol 20:223–228. doi: 10.1016/j.tree.2005.02.004 PubMedCrossRefGoogle Scholar
  54. Lozano SJ, Scharold JV, Nalepa TF (2001) Recent declines in benthic macroinvertebrate densities in Lake Ontario. Can J Fish Aquat Sci 58:518–529. doi: 10.1139/cjfas-58-3-518 CrossRefGoogle Scholar
  55. Lydeard C, Cowie RH, Ponder WF et al (2004) The global decline of nonmarine mollusks. Bioscience 54:321–330. doi: 10.1641/0006-3568(2004)054[0321:TGDONM]2.0.CO;2 CrossRefGoogle Scholar
  56. MacIsaac HJ (1996) Potential abiotic and biotic impacts of zebra mussels on the inland waters of North America. Am Zool 36:287–299Google Scholar
  57. Mack RN, Simberloff D, Lonsdale WM et al (2000) Biotic invasions: causes epidemiology, global consequences and control. Ecol Appl 10:689–710. doi: 10.1890/1051-0761(2000)010[0689:BICEGC]2.0.CO;2 CrossRefGoogle Scholar
  58. Magoulick DD, Lewis LC (2002) Predation on exotic zebra mussels by native fishes: effects on predator and prey. Freshw Biol 47:1908–1918. doi: 10.1046/j.1365-2427.2002.00940.x CrossRefGoogle Scholar
  59. May GE, Gelembiuk GW, Panov VE et al (2006) Molecular ecology of zebra mussel invasions. Mol Ecol 15:1021–1031. doi: 10.1111/j.1365-294X.2006.02814.x PubMedCrossRefGoogle Scholar
  60. McMahon RF (2000) Invasive characteristics of the freshwater bivalve Corbicula fluminea. In: Claudi R, Leach J (eds) Nonindigenous freshwater organisms: vectors, biology and impacts. Lewis Publishers, Boca Raton, pp 315–343Google Scholar
  61. McMahon RF (2002) Evolutionary and physiological adaptations of aquatic invasive animals: r selection versus resistance. Can J Fish Aquat Sci 59:1235–1244. doi: 10.1139/f02-105 CrossRefGoogle Scholar
  62. Michaud E, Desrosiers G, Mermillod-Blondin F et al (2005) The functional group approach to bioturbation: the effects of biodiffusers and gallery-diffusers of the Macoma balthica community on sediment oxygen uptake. J Exp Mar Biol Ecol 326:77–88. doi: 10.1016/j.jembe.2005.05.016 CrossRefGoogle Scholar
  63. Mistri M (2002) Ecological characteristics of the invasive Asian date mussel, Musculista senhousia, in the Sacca di Goro (Adriatic Sea, Italy). Estuaries 25:431–440. doi: 10.1007/BF02695985 CrossRefGoogle Scholar
  64. Mistri M (2004) Effect of Musculista senhousia mats on clam mortality and growth: much ado about nothing? Aquaculture 241:207–218. doi: 10.1016/j.aquaculture.2004.07.022 CrossRefGoogle Scholar
  65. Morello EB, Solustri C, Froglia C (2004) The alien bivalve Anadara demiri (Arcidae): a new invader of the Adriatic Sea, Italy. J Mar Biol Assoc UK 84:1057–1064. doi: 10.1017/S0025315404010410h CrossRefGoogle Scholar
  66. Morton B (1989) Life-history characteristics and sexual strategy of Mytilopsis sallei (Bivalvia: Dreissenacea), introduced into Hong Kong. J Zool (Lond) 219:469–485CrossRefGoogle Scholar
  67. Nalepa TF, Hartson DJ, Fanslow DL et al (1998) Declines in benthic macroinvertebrate populations in southern Lake Michigan, 1980–1993. Can J Fish Aquat Sci 55:2402–2413. doi: 10.1139/cjfas-55-11-2402 CrossRefGoogle Scholar
  68. Nowell ARM, Jumars PA (1984) Flow environments of aquatic benthos. Annu Rev Ecol Evol Syst 15:303–328Google Scholar
  69. Okamura B (1986) Group living and the effect of spatial position in aggregations of Mytilus edulis. Oecologia 69:341–347. doi: 10.1007/BF00377054 CrossRefGoogle Scholar
  70. Oliveira MD, Takeda AM, Barros LF et al (2006) Invasion by Limnoperna fortunei (Dunker, 1857) (Bivalvia, Mytilidae) of the Pantanal wetland, Brazil. Biol Invasions 8:97–104. doi: 10.1007/s10530-005-0331-0 CrossRefGoogle Scholar
  71. Orlova MI, Therriault TW, Antonov PI et al (2005) Invasion ecology of quagga mussels (Dreissena rostriformis bugensis): a review of evolutionary and phylogenetic impacts. Aquat Ecol 39:401–418. doi: 10.1007/s10452-005-9010-6 CrossRefGoogle Scholar
  72. Pace ML, Findlay SEG, Fischer D (1998) Effects of an invasive bivalve on the zooplankton community of the Hudson River. Freshw Biol 39:103–116. doi: 10.1046/j.1365-2427.1998.00266.x CrossRefGoogle Scholar
  73. Palacios R, Armstrong DA, Orensanz J (2000) Fate and legacy of an invasion: extinct and extant populations of the soft-shell clam (Mya arenaria) in Grays Harbor (Washington). Aquat Conserv 10:279–303. doi:10.1002/1099-0755(200007/08)10:4<279::AID-AQC412>3.0.CO;2-ICrossRefGoogle Scholar
  74. Paolucci EM, Cataldo DH, Fuentes CM et al (2007) Larvae of the invasive species Limnoperna fortunei (Bivalvia) in the diet of fish larvae in the Paraná River, Argentina. Hydrobiologia 589:219–233. doi: 10.1007/s10750-007-0734-2 CrossRefGoogle Scholar
  75. Parsons SA, Jefferson B (2006) Potable water treatment processes. Blackwell, OxfordCrossRefGoogle Scholar
  76. Phelps HL (1994) The Asiatic clam (Corbicula fluminea) invasion and system-level ecological change in the Potomac River Estuary near Washington, DC. Estuaries 17:614–621. doi: 10.2307/1352409 CrossRefGoogle Scholar
  77. Pilditch CA, Emerson CW, Grant J (1998) Effect of scallop shells and sediment grain size on phytoplankton flux to the bed. Cont Shelf Res 17:1869–1885. doi: 10.1016/S0278-4343(97)00050-2 CrossRefGoogle Scholar
  78. Poulton VK, Lovvorn JR, Takekawa JY (2004) Spatial and overwinter changes in clam populations of San Pablo Bay, a semiarid estuary with highly variable freshwater inflow. Estuar Coast Shelf Sci 59:459–473. doi: 10.1016/j.ecss.2003.10.005 CrossRefGoogle Scholar
  79. Powers SP, Bishop MA, Grabowski JH et al (2006) Distribution of the invasive bivalve Mya arenaria L. on intertidal flats of southcentral Alaska. J Sea Res 55:207–216. doi: 10.1016/j.seares.2005.10.004 CrossRefGoogle Scholar
  80. Prokopovich NP (1969) Deposition of clastic sediments by clams. J Sediment Petrol 39:891–901Google Scholar
  81. Rajagopal S, Venugopalan VP, van der Velde G et al (2003) Tolerance of five species of tropical marine mussels to continuous chlorination. Mar Environ Res 55:277–291. doi: 10.1016/S0141-1136(02)00272-6 PubMedCrossRefGoogle Scholar
  82. Rajagopal S, Venugopalan VP, van der Velde G et al (2006) Greening of the coasts: a review of the Perna viridis success story. Aquat Ecol 40:273–297. doi: 10.1007/s10452-006-9032-8 CrossRefGoogle Scholar
  83. Reeders HH, Bij de Vaate A (1992) Processing of polluted suspended matter from the water column by the zebra mussel (Dreissena polymorpha Pall.). Hydrobiologia 239:53–63. doi: 10.1007/BF00027529 CrossRefGoogle Scholar
  84. Reeders H, Bij de Vaate A, Noordhuis R (1993) Potential of the zebra mussel (Dreissena polymorpha) for water quality management. In: Nalepa TF, Schloesser DW (eds) Zebra mussels: biology, impacts and control. Lewis Publishers, Boca Raton, pp 439–451Google Scholar
  85. Reusch TBH (1998) Native predators contribute to invasion resistance to the non-indigenous bivalve Musculista senhousia in southern California, US. Mar Ecol Prog Ser 170:159–168. doi: 10.3354/meps170159 CrossRefGoogle Scholar
  86. Reusch TBH, Williams SL (1998) Variable responses of native eelgrass Zostera marina to a non-indigenous bivalve Musculista senhousia. Oecologia 113:428–441. doi: 10.1007/s004420050395 CrossRefGoogle Scholar
  87. Ricciardi A (2001) Facilitative interactions among aquatic invaders: is an “invasional meltdown” occurring in the Great Lakes? Can J Fish Aquat Sci 58:2513–2525. doi: 10.1139/cjfas-58-12-2513 CrossRefGoogle Scholar
  88. Ricciardi A, MacIsaac HJ (2000) Recent mass invasion of the North American Great Lakes by Ponto-Caspian species. Trends Ecol Evol 15:62–65. doi: 10.1016/S0169-5347(99)01745-0 PubMedCrossRefGoogle Scholar
  89. Ricciardi A, Whoriskey FG, Rasmussen JB (1995) Predicting the intensity and impact of Dreissena infestation on native unionid bivalves from Dreissena field density. Can J Fish Aquat Sci 52:1449–1461. doi: 10.1139/f95-140 CrossRefGoogle Scholar
  90. Ricciardi A, Whoriskey FG, Rasmussen JB (1996) Impact of the Dreissena invasion on native unionid bivalves in the upper St. Lawrence River. Can J Fish Aquat Sci 53:1434–1444. doi: 10.1139/cjfas-53-6-1434 CrossRefGoogle Scholar
  91. Ricciardi A, Whoriskey FG, Rasmussen JB (1997) The role of the zebra mussel (Dreissena polymorpha) in structuring macroinvertebrate communities on hard substrata. Can J Fish Aquat Sci 54:2596–2608. doi: 10.1139/cjfas-54-11-2596 CrossRefGoogle Scholar
  92. Robinson TB, Branch GM, Griffiths CL et al (2007) Effects of the invasive mussel Mytilus galloprovincialis on rocky intertidal community structure in South Africa. Mar Ecol Prog Ser 340:163–171. doi: 10.3354/meps340163 CrossRefGoogle Scholar
  93. Ruesink JL, Lenihan HS, Trimble AC et al (2005) Introduction of non-native oysters: ecosystem effects and restoration implications. Annu Rev Ecol Evol Syst 36:643–689. doi: 10.1146/annurev.ecolsys.36.102003.152638 CrossRefGoogle Scholar
  94. Ruiz GM, Fofonoff PW, Carlton JT et al (2000) Invasion of coastal marine communities in North America: apparent patterns, processes, and biases. Annu Rev Ecol Evol Syst 31:481–531CrossRefGoogle Scholar
  95. Schloesser DW, Nalepa TF (1994) Dramatic decline of unionid bivalves in offshore waters of western Lake Erie after infestation by the zebra mussel, Dreissena polymorpha. Can J Fish Aquat Sci 51:2234–2242. doi: 10.1139/f94-226 CrossRefGoogle Scholar
  96. Schloesser DW, Nalepa TF, Mackie GL (1996) Infestation of unionid bivalves (Unionidae) in North America. Am Zool 36:300–310Google Scholar
  97. Shea K, Chesson P (2002) Community ecology theory as a framework for biological invasions. Trends Ecol Evol 17:170–176. doi: 10.1016/S0169-5347(02)02495-3 CrossRefGoogle Scholar
  98. Silver Botts P, Patterson BA, Schloesser DW (1996) Zebra mussel effects on benthic invertebrates: physical or biotic? J N Am Benthol Soc 15:179–184. doi: 10.2307/1467947 CrossRefGoogle Scholar
  99. Simberloff D (2006) Invasional meltdown 6 years later: important phenomenon, unfortunate metaphor, or both? Ecol Lett 9:912–919. doi: 10.1111/j.1461-0248.2006.00939.x PubMedCrossRefGoogle Scholar
  100. Sousa R, Antunes C, Guilhermino L (2007) Species composition and monthly variation of the Molluscan fauna in the freshwater subtidal area of the River Minho estuary. Estuar Coast Shelf Sci 75:90–100CrossRefGoogle Scholar
  101. Sousa R, Rufino M, Gaspar M et al (2008a) Abiotic impacts on spatial and temporal distribution of Corbicula fluminea (Müller, 1774) in the River Minho Estuary, Portugal. Aquat Conserv 18:98–110. doi: 10.1002/aqc.838 CrossRefGoogle Scholar
  102. Sousa R, Antunes C, Guilhermino L (2008b) Ecology of the invasive Asian clam Corbicula fluminea (Müller, 1774) in aquatic ecosystems: an overview. Ann Limnol Int J Limnol 44:85–94CrossRefGoogle Scholar
  103. Sousa R, Dias S, Freitas V et al (2008c) Subtidal macrozoobenthic assemblages along the River Minho estuarine gradient (north-west Iberian Peninsula). Aquat Conserv 18:1063–1077. doi: 10.1002/aqc.871 CrossRefGoogle Scholar
  104. Stephens EG, Bertness MD (1991) Mussel facilitation of barnacle survival in a sheltered bay habitat. J Exp Mar Biol Ecol 145:33–48. doi: 10.1016/0022-0981(91)90004-G CrossRefGoogle Scholar
  105. Stewart TW, Miner JG, Lowe RL (1998) Quantifying mechanisms for zebra mussel effects on benthic macroinvertebrates: organic matter production and shell-generated habitat. J N Am Benthol Soc 17:81–94. doi: 10.2307/1468053 CrossRefGoogle Scholar
  106. Stewart TW, Miner JG, Lowe RL (1999a) A field experiment to determine Dreissena and predator effects on zoobenthos in a nearshore, rocky habitat of western Lake Erie. J N Am Benthol Soc 18:488–498. doi: 10.2307/1468381 CrossRefGoogle Scholar
  107. Stewart TW, Gafford JC, Miner JG et al (1999b) Dreissena-shell habitat and antipredator behavior: combined effects on survivorship of snails co-occurring with molluscivorous fish. J N Am Benthol Soc 18:274–283. doi: 10.2307/1468465 CrossRefGoogle Scholar
  108. Strayer DL (1999) Effects of alien species on freshwater molluscs in North America. J N Am Benthol Soc 18:74–98. doi: 10.2307/1468010 CrossRefGoogle Scholar
  109. Strayer DL, Caraco NF, Cole JJ et al (1999) Transformation of freshwater ecosystems by bivalves: a case study of zebra mussels in the Hudson River. Bioscience 49:19–27. doi: 10.2307/1313490 CrossRefGoogle Scholar
  110. Strayer DL, Downing JA, Haag WR et al (2004a) Changing perspectives on pearly mussels, North America’s most imperiled animals. Bioscience 54:429–439. doi: 10.1641/0006-3568(2004)054[0429:CPOPMN]2.0.CO;2 CrossRefGoogle Scholar
  111. Strayer DL, Hattala KA, Kahnle AW (2004b) Effects of an invasive bivalve (Dreissena polymorpha) on fish in the Hudson River estuary. Can J Fish Aquat Sci 61:924–941. doi: 10.1139/f04-043 CrossRefGoogle Scholar
  112. Sylvester F, Boltovskoy D, Cataldo D (2007) The invasive bivalve Limnoperna fortunei enhances benthic invertebrate densities in South American Floodplain Rivers. Hydrobiologia 589:15–27. doi: 10.1007/s10750-007-0708-4 CrossRefGoogle Scholar
  113. Thayer SA, Haas RC, Hunter RD et al (1997) Zebra mussel (Dreissena polymorpha) effects on sediment, other zoobenthos, and the diet and growth of adult yellow perch (Perca flavescens) in pond enclosures. Can J Fish Aquat Sci 54:1903–1915. doi: 10.1139/cjfas-54-8-1903 CrossRefGoogle Scholar
  114. Thorp JH, Casper AF (2002) Potential effects on zooplankton from species shifts in planktivorous mussels: a field experiment in the St. Lawrence River. Freshw Biol 47:107–119. doi: 10.1046/j.1365-2427.2002.00787.x CrossRefGoogle Scholar
  115. Torchin ME, Hechinger RF, Huspeni TC et al (2005) The introduced ribbed mussel (Geukensia demissa) in Estero de Punta Banda, Mexico: interactions with the native cord grass, Spartina foliosa. Biol Invasions 7:607–614. doi: 10.1007/s10530-004-5851-5 CrossRefGoogle Scholar
  116. Vaughn CC, Hakenkamp CC (2001) The functional role of burrowing bivalves in freshwater ecosystems. Freshw Biol 46:1431–1446. doi: 10.1046/j.1365-2427.2001.00771.x CrossRefGoogle Scholar
  117. Verween A, Kerckhof F, Vincx M et al (2006) First European record of the invasive brackish water clam Rangia cuneata (G.B. Sowerby I, 1831) (Mollusca: Bivalvia). Aquat Invasions 1:198–203CrossRefGoogle Scholar
  118. Wallentinus I, Nyberg CD (2007) Introduced marine organisms as habitat modifiers. Mar Pollut Bull 55:323–332. doi: 10.1016/j.marpolbul.2006.11.010 PubMedCrossRefGoogle Scholar
  119. Werner S, Rothhaupt K-O (2007) Effects of the invasive bivalve Corbicula fluminea on settling juveniles and other benthic taxa. J N Am Benthol Soc 26:673–680. doi: 10.1899/07-017R.1 CrossRefGoogle Scholar
  120. Zaklan S, Ydenberg R (1997) The body size burial depth relationship in the infaunal clam Mya arenaria. J Exp Mar Biol Ecol 215:1–17. doi: 10.1016/S0022-0981(97)00021-X CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Ronaldo Sousa
    • 1
    • 2
  • Jorge L. Gutiérrez
    • 3
    • 4
    • 5
    • 6
  • David C. Aldridge
    • 2
  1. 1.CIMAR/CIIMAR – Centro Interdisciplinar de Investigação Marinha e AmbientalUniversidade do PortoPortoPortugal
  2. 2.Aquatic Ecology Group, Department of ZoologyUniversity of CambridgeCambridgeUK
  3. 3.Facultad de Ciencias Exactas y NaturalesUniversidad Nacional de Mar del PlataMar del PlataArgentina
  4. 4.Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Buenos AiresArgentina
  5. 5.Grupo de Investigación y Educación en Temas Ambientales (GrIETA)Mar del PlataArgentina
  6. 6.Cary Institute of Ecosystem StudiesMillbrookUSA

Personalised recommendations