Biological Invasions

, Volume 11, Issue 10, pp 2265–2277

Life history and parasites of the invasive mosquitofish (Gambusia holbrooki) along a latitudinal gradient

  • Lluís Benejam
  • Carles Alcaraz
  • Pierre Sasal
  • Gael Simon-Levert
  • Emili García-Berthou
Original Paper


The eastern mosquitofish (Gambusia holbrooki) is among the most invasive fish worldwide and yet, while very abundant in most Mediterranean countries, it is unable to tolerate the colder winters of northern and central Europe. Understanding the effects of latitude on its life-history traits is essential to predict the potential for its invasion of central Europe in current scenarios of climate change. We studied the variation of life-history traits and parasite load in the eastern mosquitofish along a latitudinal gradient from southern France to southern Spain, sampling mosquitofish populations in eight Mediterranean river mouths ranging 5° in latitude. Southern mosquitofish populations displayed higher catch rates, allocated more energy to reproduction (gonadosomatic index and gonadal weight after accounting for fish size) and had a lower condition (total weight and eviscerated weight after accounting for fish size) than in northern populations. Despite variability among populations, size-at-maturity (L50) significantly varied with latitude and northern individuals matured at smaller size (lower L50). Parasite prevalence ranged from 0.0 to 26.7% but parasite richness was very low; all the parasites identified were larvae of pleurocercoid cestodes belonging to the order Pseudophyllidea. The abundance of mosquitofish parasites decreased with latitude and the presence and number of parasites infecting the mosquitofish had a significant negative effect on fish condition. The significant effects of latitude on the catch rates, life history and parasites of mosquitofish highlight the importance of latitudinal studies of invasive species to understand the interactive mechanisms of climate change and biological invasions.


Temperature Invasive species Latitude Reproductive investment Poeciliidae Iberian Peninsula 


  1. Agresti A (2002) Categorical data analysis. Wiley, HobokenCrossRefGoogle Scholar
  2. Alcaraz C, García-Berthou E (2007) Life history variation of invasive mosquitofish (Gambusia holbrooki) along a salinity gradient. Biol Conserv 139:83–92. doi:10.1016/j.biocon.2007.06.006 CrossRefGoogle Scholar
  3. Alcaraz C, Bisazza A, García-Berthou E (2008) Salinity mediates the competitive interactions between invasive mosquitofish and an endangered fish. Oecologia 155:205–213. doi:10.1007/s00442-007-0899-4 CrossRefPubMedGoogle Scholar
  4. Belk MC, Houston DD (2002) Bergmann’s rule in ectotherms: a test using freshwater fishes. Am Nat 160:803–808. doi:10.1086/343880 CrossRefPubMedGoogle Scholar
  5. Blanc G (1997) L’introduction des agents pathogènes dans les écosystèmes aquatiques: aspects théoriques et réalités. Bull Fr Peche Piscicult 344/345:489–513. doi:10.1051/kmae:1997043 CrossRefGoogle Scholar
  6. Blanck A, Lamouroux N (2007) Large-scale intraspecific variation in life-history traits of European freshwater fish. J Biogeogr 34:862–875. doi:10.1111/j.1365-2699.2006.01654.x CrossRefGoogle Scholar
  7. Britton RH, Moser ME (1982) Size specific predation by herons and its effect on the sex-ratio of natural populations of the mosquito fish Gambusia affinis Baird and Girard. Oecologia 53:146–151. doi:10.1007/BF00545657 CrossRefGoogle Scholar
  8. Brown-Peterson N, Peterson MS (1990) Comparative life history of female mosquitofish, Gambusia affinis, in tidal freshwater and oligohaline habitats. Environ Biol Fishes 27:33–41. doi:10.1007/BF00004902 CrossRefGoogle Scholar
  9. Chipps SR, Wahl DH (2004) Development and evaluation of a western mosquitofish bioenergetics model. Trans Am Fish Soc 133:1150–1162. doi:10.1577/T03-118.1 CrossRefGoogle Scholar
  10. Courtenay WR Jr, Meffe GK (1989) Small fishes in strange places: a review of introduced poeciliids. In: Meffe GK, Snelson FF Jr (eds) Ecology and evolution of livebearing fishes (Poeciliidae). Prentice Hall, Englewood Cliffs, pp 319–331Google Scholar
  11. Dove ADM (2000) Richness patterns in the parasite communities of exotic poeciliid fishes. Parasitology 120:609–623. doi:10.1017/S0031182099005958 CrossRefPubMedGoogle Scholar
  12. Fernández-Delgado C, Rossomanno S (1997) Reproductive biology of the mosquitofish in a permanent natural lagoon in south-west Spain: two tactics for one species. J Fish Biol 51:80–92. doi:10.1111/j.1095-8649.1997.tb02515.x CrossRefPubMedGoogle Scholar
  13. Fleming IA, Gross MR (1990) Latitudinal clines: a trade-off between egg number and size in Pacific salmon. Ecology 71:1–11. doi:10.2307/1940241 CrossRefGoogle Scholar
  14. Font I (1983) Atlas climático de España. Instituto Nacional de Meteorología, MadridGoogle Scholar
  15. García-Berthou E (2001) On the misuse of residuals in ecology: testing regression residuals vs. the analysis of covariance. J Anim Ecol 70:708–711. doi:10.1046/j.1365-2656.2001.00524.x CrossRefGoogle Scholar
  16. García-Berthou E, Moreno-Amich R (1993) Multivariate analysis of covariance in morphometric studies of the reproductive cycle. Can J Fish Aquat Sci 50:1394–1399CrossRefGoogle Scholar
  17. García-Berthou E, Alcaraz C, Pou-Rovira Q, Zamora L, Coenders G, Feo C (2005) Introduction pathways and establishment rates of invasive aquatic species in Europe. Can J Fish Aquat Sci 62:453–463. doi:10.1139/f05-017 CrossRefGoogle Scholar
  18. Garvey JE, Marschall EA (2003) Understanding latitudinal trends in fish body size through models of optimal seasonal energy allocation. Can J Fish Aquat Sci 60:938–948. doi:10.1139/f03-083 CrossRefGoogle Scholar
  19. Gotelli NJ, Arnett AE (2000) Biogeographic effects of red fire ant invasion. Ecol Lett 3:257–261. doi:10.1046/j.1461-0248.2000.00138.x CrossRefGoogle Scholar
  20. Granath WO Jr, Esch GW (1983) Temperature and other factors that regulate the composition and infrapopulation densities of Bothriocephalus acheilognathi (Cestoda) in Gambusia affinis (Pisces). J Parasitol 69:1116–1124. doi:10.2307/3280874 CrossRefGoogle Scholar
  21. Hamer AJ, Lane SJ, Mahony MJ (2002) The role of introduced mosquitofish (Gambusia holbrooki) in excluding the native green and golden bell frog (Litoria aurea) from original habitats in south-eastern Australia. Oecologia 132:445–452. doi:10.1007/s00442-002-0968-7 CrossRefGoogle Scholar
  22. Hawkins BA, Field R, Cornell HV, Currie DJ, Guégan JF, Kaufman DM et al (2003) Energy, water, and broad-scale geographic patterns of species richness. Ecology 84:3105–3117. doi:10.1890/03-8006 CrossRefGoogle Scholar
  23. Haynes JL (1995) Standardized classification of poeciliid development for life-history studies. Copeia 1995:147–154. doi:10.2307/1446809 CrossRefGoogle Scholar
  24. Haynes JL, Cashner RC (1995) Life-history and population-dynamics of the western mosquitofish: a comparison of natural and introduced populations. J Fish Biol 46:1026–1041. doi:10.1111/j.1095-8649.1995.tb01407.x CrossRefGoogle Scholar
  25. Heibo E, Magnhagen C, Vøllestad LA (2005) Latitudinal variation in life-history traits in Eurasian perch. Ecology 86:3377–3386. doi:10.1890/04-1620 CrossRefGoogle Scholar
  26. Huey RB, Gilchrist GW, Carlson ML, Berrigan D, Serra L (2000) Rapid evolution of a geographic cline in size in an introduced fly. Science 287:308–309. doi:10.1126/science.287.5451.308 CrossRefPubMedGoogle Scholar
  27. Hurlbert SH, Zedler J, Fairbanks D (1972) Ecosystem alteration by mosquitofish (Gambusia affinis) predation. Science 175:639–641. doi:10.1126/science.175.4022.639 CrossRefPubMedGoogle Scholar
  28. Johnston TA, Leggett WC (2002) Maternal and environmental gradients in the egg size of an iteroparous fish. Ecology 83:1777–1791. doi:10.1890/0012-9658(2002)083[1777:MAEGIT]2.0.CO;2 CrossRefGoogle Scholar
  29. Kats LB, Ferrer RP (2003) Alien predators and amphibian declines: review of two decades of science and the transition to conservation. Divers Distrib 9:99–110. doi:10.1046/j.1472-4642.2003.00013.x CrossRefGoogle Scholar
  30. Kennedy CEJ, Endler JA, Poynton SL, McMinn H (1987) Parasite load predicts mate choice in guppies. Behav Ecol Sociobiol 21:291–295. doi:10.1007/BF00299966 CrossRefGoogle Scholar
  31. Koya Y, Kamiya E (2000) Environmental regulation of annual reproductive cycle in the mosquitofish, Gambusia affinis. J Exp Zool 286:204–211. doi:10.1002/(SICI)1097-010X(20000201)286:2<204::AID-JEZ12>3.0.CO;2-GCrossRefPubMedGoogle Scholar
  32. Krumholz LA (1948) Reproduction in the western mosquitofish, Gambusia affinis affinis (Baird & Girard), and its use in mosquito control. Ecol Monogr 18:1–43. doi:10.2307/1948627 CrossRefGoogle Scholar
  33. L’Abée-Lund JH, Jonsson B, Jensen AJ, Saettem LM, Heggberget TG, Johnsen BO et al (1989) Latitudinal variation in life-history characteristics of sea-run migrant brown trout Salmo trutta. J Anim Ecol 58:525–542. doi:10.2307/4846 CrossRefGoogle Scholar
  34. Mills MD, Rader RB, Belk MC (2004) Complex interactions between native and invasive fish: the simultaneous effects of multiple negative interactions. Oecologia 141:713–721. doi:10.1007/s00442-004-1695-z CrossRefPubMedGoogle Scholar
  35. Nie P, Kennedy CR (1992) Populations of Bothriocephalus claviceps (Goeze) (Cestoda) in the European eel, Anguilla anguilla (L.), in three localities in Southwest England. J Fish Biol 41:521–531. doi:10.1111/j.1095-8649.1992.tb02680.x CrossRefGoogle Scholar
  36. Pérez-Bote JL, López MT (2005) Life-history pattern of the introduced eastern mosquitofish, Gambusia holbrooki (Baird & Girard, 1854), in a Mediterranean-type river: the River Guadiana (SW Iberian Peninsula). Ital J Zool (Modena) 72:241–248CrossRefGoogle Scholar
  37. Pörtner HO, Berdal B, Blust R, Brix O, Colosimo A, De Wachter B et al (2001) Climate induced temperature effects on growth performance, fecundity and recruitment in marine fish: developing a hypothesis for cause and effect relationships in Atlantic cod (Gadus morhua) and common eelpout (Zoarces viviparus). Cont Shelf Res 21:1975–1997. doi:10.1016/S0278-4343(01)00038-3 CrossRefGoogle Scholar
  38. Power M, Dempson JB, Reist JD, Schwarz CJ, Power G (2005) Latitudinal variation in fecundity among Arctic charr populations in eastern North America. J Fish Biol 67:255–273. doi:10.1111/j.0022-1112.2005.00734.x CrossRefGoogle Scholar
  39. Prenter J, MacNeil C, Dick JTA, Dunn AM (2004) Roles of parasites in animal invasions. Trends Ecol Evol 19:385–390. doi:10.1016/j.tree.2004.05.002 CrossRefPubMedGoogle Scholar
  40. Reznick D (1981) “Grandfather effects”: the genetics of interpopulation differences in offspring size in the mosquito fish. Evol Int J Org Evol 35:941–953. doi:10.2307/2407865 Google Scholar
  41. Reznick DN (1990) Plasticity in age and size at maturity in male guppies (Poecilia reticulata)—an experimental evaluation of alternative models of development. J Evol Biol 3:185–203. doi:10.1046/j.1420-9101.1990.3030185.x CrossRefGoogle Scholar
  42. Reznick D, Endler JA (1982) The impact of predation on life history evolution in Trinidadian guppies (Poecilia reticulata). Evol Int J Org Evol 36:160–177. doi:10.2307/2407978 Google Scholar
  43. Reznick DN, Butler MJ, Rodd FH, Ross P (1996a) Life-history evolution in guppies (Poecilia reticulata). 6. Differential mortality as a mechanism for natural selection. Evol Int J Org Evol 50:1651–1660. doi:10.2307/2410901 Google Scholar
  44. Reznick DN, Rodd FH, Cardenas M (1996b) Life-history evolution in guppies (Poecilia reticulata: Poeciliidae). IV. Parallelism in life-history phenotypes. Am Nat 147:319–338. doi:10.1086/285854 CrossRefGoogle Scholar
  45. Reznick D, Butler MJ, Rodd H (2001) Life-history evolution in guppies. VII. The comparative ecology of high- and low-predation environments. Am Nat 157:126–140. doi:10.1086/318627 CrossRefPubMedGoogle Scholar
  46. Reznick D, Bryant MJ, Bashey F (2002) r- and K-selection revisited: the role of population regulation in life-history evolution. Ecology 83:1509–1520. doi:10.1890%2F0012-9658(2002)083%5B1509%3ARAKSRT%5D2.0.CO%3B2 Google Scholar
  47. Reznick D, Schultz E, Morey S, Roff D (2006) On the virtue of being the first born: the influence of date of birth on fitness in the mosquitofish, Gambusia affinis. Oikos 114:135–147. doi:10.1111/j.2006.0030-1299.14446.x CrossRefGoogle Scholar
  48. Rincón PA, Correas AM, Morcillo F, Risueño P, Lobón-Cerviá J (2002) Interaction between the introduced eastern mosquitofish and two autochthonous Spanish toothcarps. J Fish Biol 61:1560–1585. doi:10.1111/j.1095-8649.2002.tb02498.x CrossRefGoogle Scholar
  49. Roessig JM, Woodley CM, Cech JJ, Hansen LJ (2004) Effects of global climate change on marine and estuarine fishes and fisheries. Rev Fish Biol Fish 14:251–275. doi:10.1007/s11160-004-6749-0 CrossRefGoogle Scholar
  50. Sokal RR, Rohlf FJ (1995) Biometry: the principles and practice of statistics in biological research. Freeman, New YorkGoogle Scholar
  51. Specziár A (2004) Life history pattern and feeding ecology of the introduced eastern mosquitofish, Gambusia holbrooki, in a thermal spa under temperate climate, of Lake Hévíz, Hungary. Hydrobiologia 522:249–260. doi:10.1023/B:HYDR.0000029978.46013.d1 CrossRefGoogle Scholar
  52. Stearns SC (1992) The evolution of life histories. Oxford University Press, Oxford, p 262Google Scholar
  53. Stockwell CA, Weeks SC (1999) Translocations and rapid evolutionary responses in recently established populations of western mosquitofish (Gambusia affinis). Anim Conserv 2:103–110. doi:10.1111/j.1469-1795.1999.tb00055.x CrossRefGoogle Scholar
  54. Torchin ME, Lafferty KD, Dobson AP, McKenzie VJ, Kuris AM (2003) Introduced species and their missing parasites. Nature 421:628–630. doi:10.1038/nature01346 CrossRefPubMedGoogle Scholar
  55. Trendall JT (1982) Covariation of life history traits in the mosquitofish, Gambusia affinis. Am Nat 119:774–783. doi:10.1086/283954 CrossRefGoogle Scholar
  56. Turner CL (1941) Morphogenesis of the gonopodium in Gambusia affinis affinis. J Morphol 69:161–185. doi:10.1002/jmor.1050690107 CrossRefGoogle Scholar
  57. Vargas MJ, Sostoa Ad (1996) Life history of Gambusia holbrooki (Pisces, Poeciliidae) in the Ebro delta (NE Iberian peninsula). Hydrobiologia 341:215–224. doi:10.1007/BF00014686 CrossRefGoogle Scholar
  58. Vondracek B, Wurtsbaugh WA, Cech JJ (1988) Growth and reproduction of the mosquitofish, Gambusia affinis, in relation to temperature and ration level: consequences for life history. Environ Biol Fishes 21:45–57. doi:10.1007/BF02984442 CrossRefGoogle Scholar
  59. Willig MR, Kaufman DM, Stevens RD (2003) Latitudinal gradients of biodiversity: pattern, process, scale, and synthesis. Annu Rev Ecol Evol Syst 34:273–309. doi:10.1146/annurev.ecolsys.34.012103.144032 CrossRefGoogle Scholar
  60. Wilson RS (2005) Temperature influences the coercive mating and swimming performance of male eastern mosquitofish. Anim Behav 70:1387–1394. doi:10.1016/j.anbehav.2004.12.024 CrossRefGoogle Scholar
  61. Wooten MC, Scribner KT, Smith MH (1988) Genetic variability and systematics of Gambusia in the southeastern United States. Copeia 1988:283–289. doi:10.2307/1445867 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Lluís Benejam
    • 1
  • Carles Alcaraz
    • 2
  • Pierre Sasal
    • 3
  • Gael Simon-Levert
    • 3
  • Emili García-Berthou
    • 1
  1. 1.Institute of Aquatic EcologyUniversity of GironaGironaSpain
  2. 2.Aquatic Ecosystems, IRTASant Carles de la RàpitaSpain
  3. 3.Laboratoire de Parasitologie Fonctionnelle et EvolutiveCNRS-University of PerpignanPerpignanFrance

Personalised recommendations