Biological Invasions

, 11:2243 | Cite as

Biological invasions and phenotypic evolution: a quantitative genetic perspective

Original Paper


Among the many different components of global environmental change, biological invasions represent the one with the most long-term ecological and evolutionary consequences, as effects are irreversible. Although the ecological impact of invasive species has been under great scrutiny, its evolutionary aspects and consequences have remained less explored. Once established, an important part of the success of an invasive species will depend on the presence of genetic variation in populations at the geographic boundaries upon which natural selection can act. This information is integrated in G, the matrix of additive genetic variances and covariances for a suite of traits. The G-matrix shows the restrictions and potentialities of adaptive evolution and, together with natural selection determine the direction and rate of phenotypic evolution. Here I propose that a geographic analysis of G in populations of the introduced and native range becomes essential to understand critical evolutionary issues associated with invasion success.


G-matrix Quantitative genetics Range expansion Natural selection Heritability 


  1. Ackerman RR, Cheverud JM (2002) Discerning evolutionary processes in patterns of tamarin (genus Saguinus) craniofacial variation. Am J Phys Anthropol 117:260–271. doi:10.1002/ajpa.10038 CrossRefGoogle Scholar
  2. Arnold SJ (1994) Multivariate inheritance and evolution: a review of concepts. In: Boake CRB (ed) Quantitative genetic studies of behavioral evolution. The University of Chicago Press, ChicagoGoogle Scholar
  3. Arnold SJ, Pfrender ME, Jones AG (2001) The adaptive landscape as a conceptual bridge between micro- and macroevolution. Genetica 112/113:9–32. doi:10.1023/A:1013373907708 CrossRefGoogle Scholar
  4. Bacigalupe LD, Nespolo RF, Bustamante DM, Bozinovic F (2004) The quantitative genetics of sustained energy budget in a wild mouse. Evol Int J Org Evol 58:421–429Google Scholar
  5. Bégin M, Roff DA (2003) The constancy of the G matrix through species divergence and the effects of quantitative genetic constraints on phenotypic evolution a case study in crickets. Evol Int J Org Evol 57:110–71120Google Scholar
  6. Blows MW, Higgie M (2003) Genetic constraints on the evolution of mate recognition under natural selection. Am Nat 161:240–253. doi:10.1086/345783 CrossRefPubMedGoogle Scholar
  7. Brodie EDIII, Moore AJ, Janzen FJ (1995) Visualizing and quantifying natural selection. Trends Ecol Evol 10:313–318. doi:10.1016/S0169-5347(00)89117-X CrossRefGoogle Scholar
  8. Chenoweth SF, Blows MW (2008) Qst meets the G matrix: the dimensionality of adaptive divergence in multiple correlated quantitative traits. Evol Int J Org Evol 62:1437–1449. doi:10.1111/j.1558-5646.2008.00374.x Google Scholar
  9. Cheverud JM (1984) Quantitative genetics and developmental constraints on evolution by selection. J Theor Biol 10:155–171. doi:10.1016/S0022-5193(84)80050-8 CrossRefGoogle Scholar
  10. Courchamp F, Chapuis JL, Pascal M (2003) Mammal invaders on islands: impact, control and control impact. Biol Rev Camb Philos Soc 78:347–383. doi:10.1017/S1464793102006061 CrossRefPubMedGoogle Scholar
  11. Ehrenfeld J (2003) Effects of exotic plant invasions on soil nutrient cycling processes. Ecosystems (N Y Print) 6:503–523. doi:10.1007/s10021-002-0151-3 CrossRefGoogle Scholar
  12. Ellstrand NC, Schierenbeck KA (2000) Hybridization as a stimulus for the evolution of invasiveness in plants? Proc Natl Acad Sci USA 97:7043–7050. doi:10.1073/pnas.97.13.7043 CrossRefPubMedGoogle Scholar
  13. Facon B, Pointier JP, Jarne P, Sarda V, David P (2008) High genetic variance in life-history strategies within invasive populations by way of multiple introductions. Curr Biol 18:363–367. doi:10.1016/j.cub.2008.01.063 CrossRefPubMedGoogle Scholar
  14. Falconer DS, Mackay TFC (1996) Introduction to quantitative genetics. Longman, HarlowGoogle Scholar
  15. Foerster K, Coulson T, Sheldon BC, Pemberton JM, Clutton-Brock TH, Kruuk LEB (2007) Sexually antagonistic genetic variation for fitness in red deer. Nature 447:1107–1111. doi:10.1038/nature05912 CrossRefPubMedGoogle Scholar
  16. Franks SJ, Pratt PD, Dray FA, Simms EL (2004) Selection for resistance in invasive plants. Weed Technol 181:1486–1489CrossRefGoogle Scholar
  17. Garant D, Kruuk LEB (2005) How to use molecular marker data to measure evolutionary parameters in wild populations. Mol Ecol 14:1843–1859. doi:10.1111/j.1365-294X.2005.02561.x CrossRefPubMedGoogle Scholar
  18. Garant D, Kruuk LEB, McCleery RH, Sheldon BC (2004) Evolution in a changing environment: a case study with great tit fledging mass. Am Nat 164:E115–E129. doi:10.1086/424764 CrossRefPubMedGoogle Scholar
  19. Garant D, Kruuk LEB, McCleery RH, Sheldon BC (2007) The effects of environmental heterogeneity on multivariate selection on reproductive traits in female great tits. Evol Int J Org Evol 61:1546–1559. doi:10.1111/j.1558-5646.2007.00128.x Google Scholar
  20. García-Ramos G, Rodríguez D (2002) Evolutionary speed of species invasion. Evol Int J Org Evol 56:661–668. doi:10.1554/0014-3820(2002)056[0661:ESOSI]2.0.CO;2 Google Scholar
  21. Hadfield JD (2008) Estimating evolutionary parameters when viability selection is operating. Proc R Soc Lond B Biol Sci 275:723–734. doi:10.1098/rspb.2007.1013 CrossRefGoogle Scholar
  22. Hadfield JD, Nutall A, Osorio D, Owens IPF (2007) Testing the phenotypic gambit: phenotypic, genetic and environmental correlations of colour. J Evol Biol 20:549–557. doi:10.1111/j.1420-9101.2006.01262.x CrossRefPubMedGoogle Scholar
  23. Hansen TF (2006) The evolution of genetic architecture. Annu Rev Ecol Evol Syst 37:123–157. doi:10.1146/annurev.ecolsys.37.091305.110224 CrossRefGoogle Scholar
  24. Houle D, Mezey J, Galpern P (2002) Interpretation of the results of common principal components analyses. Evol Int J Org Evol 56:433–440Google Scholar
  25. Huey RB, Gilchrist GW, Hendry AP (2005) Using invasive species to study evolution. In: Sax DF DF, Stachowicz JJ, Gaines SD (eds) Species invasions: insights into ecology, evolution and biogeography. Sinauer Associates, SunderlandGoogle Scholar
  26. Jaquard A (1983) Heritability: one word, three concepts. Biometrics 39:465–477. doi:10.2307/2531017 CrossRefGoogle Scholar
  27. Keller SR, Taylor DR (2008) History, chance and adaptation during a biological invasion: separating stochastic phenotypic evolution from response to selection. Ecol Lett 11:852–866. doi:10.1111/j.1461-0248.2008.01188.x CrossRefPubMedGoogle Scholar
  28. Kirkpatrick M, Barton NH (1997) Evolution of a species’ range. Am Nat 150:1–23. doi:10.1086/286054 CrossRefPubMedGoogle Scholar
  29. Koening WD (2003) European starlings and their effect on native cavity-nesting birds. Conserv Biol 17:1134–1140. doi:10.1046/j.1523-1739.2003.02262.x CrossRefGoogle Scholar
  30. Kolar CS, Lodge DM (2001) Progress in invasion biology: predicting invaders. Trends Ecol Evol 16:199–204. doi:10.1016/S0169-5347(01)02101-2 CrossRefPubMedGoogle Scholar
  31. Kruuk LEB (2004) Estimating genetic parameters in wild populations using the ‘animal model’. Philos Trans R Soc B 359:873–890. doi:10.1098/rstb.2003.1437 CrossRefGoogle Scholar
  32. Kruuk LEB, Hadfield JD (2007) How to separate genetic and environmental causes of similarity between relatives. J Evol Biol 20:1890–1903. doi:10.1111/j.1420-9101.2007.01377.x CrossRefPubMedGoogle Scholar
  33. Kruuk LEB, Clutton-Brock TH, Slate J, Pemberton JM, Brotherstone S, Guinness FE (2000) Heritability of fitness in a wild mammal population. Proc Natl Acad Sci USA 97:698–703. doi:10.1073/pnas.97.2.698 CrossRefPubMedGoogle Scholar
  34. Lande R (1979) Quantitative genetic analyses of multivariate evolution, applied to brain: body size allometry. Evol Int J Org Evol 33:402–416. doi:10.2307/2407630 Google Scholar
  35. Lande R (1980) The genetic covariances between characters maintained by pleiotropic mutations. Genetics 94:203–215PubMedGoogle Scholar
  36. Lande R, Arnold SJ (1983) The measurement of selection on correlated characters. Evol Int J Org Evol 37:1210–1226. doi:10.2307/2408842 Google Scholar
  37. Lee CE (2002) Evolutionary genetics of invasive species. Trends Ecol Evol 17:386–391. doi:10.1016/S0169-5347(02)02554-5 CrossRefGoogle Scholar
  38. Lock JE, Smiseth PT, Moore AJ (2004) Selection, inheritance and the evolution of parent-offspring interactions. Am Nat 164:13–24. doi:10.1086/421444 CrossRefPubMedGoogle Scholar
  39. Lockwood JL, Hoopes MF, Marchetti MP (2007) Invasion ecology. Blackwell, OxfordGoogle Scholar
  40. Lynch M, Walsh B (1998) Genetics and analysis of quantitative traits. Sinauer, SutherlandGoogle Scholar
  41. Marroig G, Cheverud JM (2004) Did natural selection or genetic drift produce the cranial diversification of neotropical monkeys? Am Nat 163:417–428. doi:10.1086/381693 CrossRefPubMedGoogle Scholar
  42. Martin G, Chapuis E, Goudet J (2008) Multivariate Qst–Fst comparisons: a neutrality test for the evolution of the G matrix in structured populations. Genetics. doi:10.1534/genetics.107.080820 Google Scholar
  43. McGuigan K (2006) Studying phenotypic evolution using multivariate quantitative genetics. Mol Ecol 15:883–896. doi:10.1111/j.1365-294X.2006.02809.x CrossRefPubMedGoogle Scholar
  44. Merilä J, Kruuk LEB, Sheldon BC (2001) Cryptic evolution in a wild bird population. Nature 412:76–79. doi:10.1038/35083580 CrossRefPubMedGoogle Scholar
  45. Milner JM, Pemberton JM, Brotherstone S, Albon SD (2000) Estimating variance components and heritabilities in the wild: a case study using the ‘animal model’ approach. J Evol Biol 13:804–813. doi:10.1046/j.1420-9101.2000.00222.x CrossRefGoogle Scholar
  46. Mooney HA, Cleland EE (2001) The evolutionary impact of invasive species. Proc Natl Acad Sci USA 98:5446–5451. doi:10.1073/pnas.091093398 CrossRefPubMedGoogle Scholar
  47. Moore AJ, Kukuk PF (2002) Quantitative genetics analysis in natural populations. Nat Rev Genet 3:971–978. doi:10.1038/nrg951 CrossRefPubMedGoogle Scholar
  48. Ness JH, Bronstein JL (2004) The effects of invasive ants on prospective ant mutualists. Biol Invasions 6:445–461. doi:10.1023/B:BINV.0000041556.88920.dd CrossRefGoogle Scholar
  49. Novak SJ (2007) The role of evolution in the invasion process. Proc Natl Acad Sci USA 104:3671–3672. doi:10.1073/pnas.0700224104 CrossRefPubMedGoogle Scholar
  50. Nussey DH, Kruuk LEB, Morris A, Clutton-Brock TH (2007) Environmental conditions in early life influence ageing rates in a wild population of red deer. Curr Biol 17:R1000–1001CrossRefPubMedGoogle Scholar
  51. Orrock JL, Danielson BJ (2004) Rodents balancing a variety of risks: invasive fire ants and indirect and direct indicators of predation risk. Oecologia 140:662–667. doi:10.1007/s00442-004-1613-4 CrossRefPubMedGoogle Scholar
  52. Ovaskainen O, Cano JM, Merila J (2008) A Bayesian framework for comparative quantitative genetics. Proc R Soc Lond B Biol Sci 275:669–678. doi:10.1098/rspb.2007.0949 CrossRefGoogle Scholar
  53. Palumbi SR (2001) Humans as the world’s greatest evolutionary force. Science 293:1786–1790. doi:10.1126/science.293.5536.1786 CrossRefPubMedGoogle Scholar
  54. Perry WL, Feder JL, Dwyer G, Lodge DM (2001) Hybrid zone dynamics and species replacement between Orconectes crayfishes in a northern Wisconsin lake. Evol Int J Org Evol 55:1153–1166Google Scholar
  55. Phillips PC, Arnold SJ (1999) Hierarchical comparison of genetic variante-covariance matrices. I. Using the Flury hierarchy. Evol Int J Org Evol 53:1506–1515. doi:10.2307/2640896 Google Scholar
  56. Phillips BL, Shine R (2006) An invasive species induces rapid adaptive change in a native predator: cane toads and black snakes in Australia. Proc R Soc Lond B Biol Sci 273:1545–1550. doi:10.1098/rspb.2006.3479 CrossRefGoogle Scholar
  57. Phillips BL, Brown GP, Webb JK, Shine R (2006) Invasion and the evolution of speed in toads. Nature 439:803. doi:10.1038/439803a CrossRefPubMedGoogle Scholar
  58. Rausher MD (1992) The measurement of selection on quantitative traits: biases due to environmental covariances between traits and fitness. Evol Int J Org Evol 46:616–626. doi:10.2307/2409632 Google Scholar
  59. Ritland K (1996) Marker-based methods for inferences about quantitative inheritance in natural populations. Evol Int J Org Evol 50:1062–1073. doi:10.2307/2410647 Google Scholar
  60. Roff DA (1997) Evolutionary quantitative genetics. Chapman and Hall, New YorkGoogle Scholar
  61. Roff DA (2000) The evolution of the G matrix: selection or drift? Heredity 84:135–142. doi:10.1046/j.1365-2540.2000.00695.x CrossRefPubMedGoogle Scholar
  62. Roff DA (2002) Comparing G matrices: a MANOVA approach. Evol Int J Org Evol 56:1286–1291Google Scholar
  63. Roff DA (2006) Introduction to computer-intensive methods of data analysis in biology. Cambridge University Press, CambridgeGoogle Scholar
  64. Roff DA, Mousseau T (2005) The evolution of the phenotypic covariance matrix: evidence for selection and drift in Melanoplus. J Evol Biol 18:1104–1114. doi:10.1111/j.1420-9101.2005.00862.x CrossRefPubMedGoogle Scholar
  65. Roff DA, Mousseau T, Moller AP, de Lope F, Saino N (2004) Geographic variation in the G matrices of wild populations of the barn swallow. Heredity 93:8–14. doi:10.1038/sj.hdy.6800404 CrossRefPubMedGoogle Scholar
  66. Sakai AK, Allendorf FW, Holt JS, Lodge DM, Molofsky J, Uit KA, Baughman S, Cabin RJ, Cohen JE, Ellstrand NC, McCauley DE, O’Neill P, Parker IM, Thompson JN, Weller SG (2001) The population biology of invasive species. Annu Rev Ecol Syst 32:305–332. doi:10.1146/annurev.ecolsys.32.081501.114037 CrossRefGoogle Scholar
  67. Sala OE, Chapin FSIII, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Huber-Sanwald E, Huenneke LF, Jackson RB, Kinzig A, Leemans R, Lodge DM, Mooney HA, Oesterheld M, Poff NLR, Skyes MT, Walsker BH, Walsker M, Wall DH (2000) Global biodiversity scenarios for the year 2100. Science 287:1770–1774. doi:10.1126/science.287.5459.1770 CrossRefPubMedGoogle Scholar
  68. Schlinder DE, Knapp RA, Leavitt PP (2001) Alteration of nutrient cycles and algal production resulting from fish introductions into mountain lakes. Ecosystems (N Y Print) 4:308–321. doi:10.1007/s10021-001-0013-4 CrossRefGoogle Scholar
  69. Schluter D (1996) Adaptive radiation along lines of least resistance. Evol Int J Org Evol 50:1766–1774. doi:10.2307/2410734 Google Scholar
  70. Steppan SJ (1997a) Phylogenetic analysis of phenotypic covariance structure. I. Contrasting results from matrix correlation and common principal component analyses. Evol Int J Org Evol 51:571–586. doi:10.2307/2411129 Google Scholar
  71. Steppan SJ (1997b) Phylogenetic analysis of phenotypic covariance structure. II. Reconstructing matrix evolution. Evol Int J Org Evol 51:587–594. doi:10.2307/2411130 Google Scholar
  72. Steppan SJ, Phillips PC, Houle D (2002) Comparative quantitative genetics: evolution of the G matrix. Trends Ecol Evol 17:320–327. doi:10.1016/S0169-5347(02)02505-3 CrossRefGoogle Scholar
  73. Strayer DL, Eviner VT, Jeschke JM, Pace ML (2006) Understanding the long-term effects of species invasions. Trends Ecol Evol 21:645–651. doi:10.1016/j.tree.2006.07.007 CrossRefPubMedGoogle Scholar
  74. Tsutsiu ND, Suarez AV, Holway DA, Case TJ (2000) Reduced genetic variation and the success of an invasive species. Proc Natl Acad Sci USA 97:5948–5953. doi:10.1073/pnas.100110397 CrossRefGoogle Scholar
  75. Vitousek PM (1992) Global environmental change: an introduction. Annu Rev Ecol Syst 23:1–14. doi:10.1146/ CrossRefGoogle Scholar
  76. Vitousek PM (1994) Beyond global warming: ecology and global change. Ecology 75:1861–1876. doi:10.2307/1941591 CrossRefGoogle Scholar
  77. Vitousek PM, Mooney HA, Lubchenco J, Melillo JM (1997) Human domination of Earth’s ecosystems. Science 277:494–499. doi:10.1126/science.277.5325.494 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Departamento de ZoologíaUniversidad de ConcepciónConcepciónChile

Personalised recommendations