Biological Invasions

, Volume 11, Issue 5, pp 1121–1130 | Cite as

Introgression between invasive saltcedars (Tamarix chinensis and T. ramosissima) in the USA

Original Paper

Abstract

Saltcedars (Tamarix ramosissima and T. chinensis) are native to Asia, but since introduction into the USA have become common and invasive in many western riparian habitats. Recent molecular analysis of a single locus nuclear DNA sequence marker has shown that in their native range the two species are genetically distinct, but within the USA populations many of the plants (23%) are novel hybrids. Here, we used multilocus DNA markers (amplified fragment length polymorphisms) to determine the levels of introgression in USA plants. Species-specific diagnostic markers, principal coordinates analysis, and a Bayesian model-based clustering analysis all indicate a much higher incidence of hybridization (83–87%) than was revealed by the single locus marker, with USA plants forming a genetic continuum between the two parental types. Additionally, the level of introgression toward Tamarix ramosissima or T. chinensis was strongly correlated with latitude. Concordance of level of introgression was highest between principal coordinates analysis and the Bayesian analysis. The high percentage of novel hybrids may have implications for classical biological control efforts.

Keywords

AFLP Introgression Hybridization Invasion Saltcedar Tamarix 

Abbreviations

AFLP

Amplified fragment length polymorphism

PCOA

Principal coordinate analysis

UPGMA

Unweighted pair group matching algorithm

PPCL

Phosphoenolpyruvate carboxylase

References

  1. Abbott RJ (1992) Plant invasions, interspecific hybridization and the evolution of new plant taxa. Trends Ecol Evol 7:401–405CrossRefGoogle Scholar
  2. Abbott RJ, James JK, Milne RI et al (2003) Plant introductions, hybridization and gene flow. Philos T R Soc B 358:1123–1132CrossRefGoogle Scholar
  3. Ainouche ML, Fortune PM, Salmon A, Parisod C, Grandbastien M-A, Fukunaga K, Ricou M, Misset M-T (2008) Hybridization, polyploidy and invasion: lessons from Spartina (Poaceae). Biol Invasions. doi:10.1007/s10530-008-9383-2 Google Scholar
  4. Allred K (2002) Identification and taxonomy of Tamarix (Tamaricaceae) in New Mexico. Desert Plants 18:26–32Google Scholar
  5. Anderson EC (1949) Introgressive hybridization. Wiley, New YorkGoogle Scholar
  6. Anderson EC, Thompson EA (2002) A model-based method for identifying species hybrids using multilocus genetic data. Genetics 160:1217–1229PubMedGoogle Scholar
  7. Bailey JK, Schweitzer JA, Whitham TG (2001) Salt cedar negatively affects biodiversity of aquatic macroinvertebrates. Wetlands 21:223–331CrossRefGoogle Scholar
  8. Baum BR (1967) Introduced and naturalized tamarisks in the United States and Canada. Baileya 15:19–25Google Scholar
  9. Baum BR (1978) The genus Tamarix. Israel Academy of Sciences and Humanities, Jerusalem, 209 ppGoogle Scholar
  10. Benham JJ (2001) Genographer v. 1.6.0. http://hordeum.oscs.montana.edu/genographer/. Cited 15 Dec 2006
  11. Bleeker W (2003) Hybridization and Rorippa austriaca (Brassicaceae) invasion in Germany. Mol Ecol 12:1831–1841PubMedCrossRefGoogle Scholar
  12. Bonin A, Bellemain E, Bronken Eidesen P et al (2004) How to track and assess genotyping errors in population genetics studies. Mol Ecol 13:3261–3273PubMedCrossRefGoogle Scholar
  13. Bonin A, Erich D, Manel S (2007) Statistical analysis of amplified fragment length polymorphism data: a toolbox for molecular ecologists and evolutionists. Mol Ecol 16:3737–3758PubMedCrossRefGoogle Scholar
  14. Bruckart W, Cavin C, Vajna L et al (2004) Differential susceptibility of Russian thistle accessions to Colletotrichum gloeosporioides. Biol Control 30:306–311CrossRefGoogle Scholar
  15. Burdon JJ, Groves RH, Cullen JM (1981) The impact of biological-control on the distribution and abundance of Chondrilla juncea in southeastern Australia. J Appl Ecol 18:957–966CrossRefGoogle Scholar
  16. Burdon JJ, Groves RH, Kaye PE et al (1984) Competition in mixtures of susceptible and resistant genotypes of Chondrilla juncea differentially infected with rust. Oecologia 64:199–203CrossRefGoogle Scholar
  17. Choler P, Erschbamer B, Tribsch A et al (2004) Genetic introgression as a potential to widen a species’ niche: insights from alpine Carex curvula. Proc Natl Acad Sci USA 101:171–176PubMedCrossRefGoogle Scholar
  18. Crins WJ (1989) The Tamaricaceae of the southeastern United States. J Arnold Arbor 70:403–425Google Scholar
  19. DeLoach CJ, Carruthers RI, Dudley TL (2004) First results for control of saltcedar (Tamarix spp.) in the open field in the western United States. In: Cullen JM, Briese DT, Kriticos DJ (eds) Proceedings of the XI international symposium on biological control of weeds. CSIRO Entomology, Canberra, pp 505–513Google Scholar
  20. Di Tomaso JM (1998) Impact, biology, and ecology of salt-cedar (Tamarix spp.) in the southwestern United States. Weed Technol 12:326–336Google Scholar
  21. Dice L (1945) Measures of the amount of ecologic association between species. Ecology 26:297–302CrossRefGoogle Scholar
  22. Ellstrand NC, Schierenbeck KA (2000) Hybridization as a stimulus for the evolution of invasiveness in plants? Proc Natl Acad Sci USA 97:7043–7050PubMedCrossRefGoogle Scholar
  23. Gaskin JF, Schaal BA (2002) Hybrid Tamarix widespread in US invasion and undetected in native Asian range. Proc Natl Acad Sci USA 99:11256–11259PubMedCrossRefGoogle Scholar
  24. Gaskin JF, Shafroth PB (2005) Hybridization of Tamarix ramosissima and T. chinensis (saltcedars) with T. aphylla (athel) (family Tamaricaceae) in the southwestern USA determined from DNA sequence data. Madroño 52:1–10CrossRefGoogle Scholar
  25. Gobert V, Moja S, Colson M et al (2002) Hybridization in the section Mentha (Lamiaceae) inferred from AFLP markers. Am J Bot 89:2017–2023CrossRefGoogle Scholar
  26. Goolsby JA, De Barro PJ, Makinson JR et al (2006) Matching the origin of an invasive weed for selection of a herbivore haplotype for a biological control programme. Mol Ecol 15:287–297PubMedCrossRefGoogle Scholar
  27. Guo Y-P, Saukel J, Mittermayr R et al (2005) AFLP analyses demonstrate genetic divergence, hybridization, and multiple polyploidization in the evolution of Achillea (Asteraceae-Anthemideae). New Phytol 166:273–290PubMedCrossRefGoogle Scholar
  28. Hansen LB, Siegismund HR, Jorgensen RB (2003) Progressive introgression between Brassica napus (oilseed rape) and B. rapa. Heredity 91:276–283PubMedCrossRefGoogle Scholar
  29. Hillis DM, Mable BK, Larson A et al (1996) Nucleic acids IV:sequencing and cloning. In: Hillis DM, Moritz C, Mable BK (eds) Molecular systematics. Sinauer Associates, Sunderland, pp 321–381Google Scholar
  30. Jensen JL, Bohonak AJ, Kelley ST (2005) Isolation by distance, web service. BMC Genet 6:13PubMedCrossRefGoogle Scholar
  31. Lee C (2002) Evolutionary genetics of invasive species. Trends Ecol Evol 17:386–391CrossRefGoogle Scholar
  32. Lewontin RC, Birch LC (1966) Hybridization as a source of variation for the adaptation to new environments. Evolution 20:315–336CrossRefGoogle Scholar
  33. Milne RI, Abbott RJ (2000) Origin and evolution of invasive naturalized material of Rhododendron ponticum L. in the British Isles. Mol Ecol 9:541–556PubMedCrossRefGoogle Scholar
  34. Moody ML, Les DH (2002) Evidence of hybridity in invasive watermilfoil (Myriophyllum) populations. Proc Natl Acad Sci USA 99:14867–14871PubMedCrossRefGoogle Scholar
  35. Nei M, Li WH (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. P Natl Acad Sci USA 76:5269–5273CrossRefGoogle Scholar
  36. O’Hanlon PC, Peakall R, Briese DT (1999) Amplified fragment length polymorphism (AFLP) reveals introgression in weedy Onopordum thistles: hybridization and invasion. Mol Ecol 8:1239–1246PubMedCrossRefGoogle Scholar
  37. Papa R, Troggio M, Ajmone-Marsan P et al (2005) An improved protocol for the production of AFLP markers in complex genomes by means of capillary electrophoresis. J Anim Breed Genet 122:62–68PubMedCrossRefGoogle Scholar
  38. Rieseberg LH, Kim MJ, Seiler GJ (1999) Introgression between the cultivated sunflower and a sympatric wild relative, Helianthus petiolaris (Asteraceae). Int J Plant Sci 160:102–108CrossRefGoogle Scholar
  39. Rieseberg LH, Kim SC, Randell RA et al (2007) Hybridization and the colonization of novel habitats by annual sunflowers. Genetica 129:149–165PubMedCrossRefGoogle Scholar
  40. Robinson TW (1965) Introduction, spread, and aerial extent of saltcedar (Tamarix) in the western states. US Geological Survey. Report 491-AGoogle Scholar
  41. Roderick GK, Navajas M (2003) Genes in new environments: genetics and evolution in biological control. Nat Rev Genet 4:889–899PubMedCrossRefGoogle Scholar
  42. Rohlf FJ (1992) NTSYS-pc. Numerical taxonomy and multivariate analysis system. Version 2.11f. Exeter Software, SetauketGoogle Scholar
  43. Sakai AK, Allendorf FW, Holt JS et al (2001) The population biology of invasive species. Annu Rev Ecol Syst 32:305–332CrossRefGoogle Scholar
  44. SAS Institute Inc. (2000) SAS OnlineDoc, Version 8. SAS Institute, Inc., CaryGoogle Scholar
  45. Schierenbeck K, Ellstrand NC (2008) Hybridization and the evolution of invasiveness in plants and other organisms. Biol Invasions. doi:10.1007/s10530-008-9388-x Google Scholar
  46. Scotti I, Mariani A, Verona V et al (2002) AFLP markers and cytotaxonomic analysis reveal hybridisation in the genus Schoenus (Cyperaceae). Genome 45:222–228PubMedCrossRefGoogle Scholar
  47. Seehausen O (2004) Hybridization and adaptive radiation. Trends Ecol Evol 19:198–207PubMedCrossRefGoogle Scholar
  48. Shafroth PB, Cleverly J, Dudley TL et al (2005) Saltcedar removal water salvage and wildlife habitat restoration along rivers in the southwestern US. Environ Manag 35:231–246CrossRefGoogle Scholar
  49. Sloop CM, Ayres DR, Strong DR (2008) The rapid evolution of self-fertility in Spartina hybrids (Spartina alterniflora × foliosa) invading San Francisco Bay, CA. Biol Invasions. doi:10.1007/s10530-008-9385-0 Google Scholar
  50. Stebbins GLJ (1959) The role of hybridization in evolution. Proc Am Philos Soc 103:231–251Google Scholar
  51. Templeton A (1981) Mechanisms of speciation—a population genetic approach. Annu Rev Ecol Syst 12:23–48CrossRefGoogle Scholar
  52. Tranel PJ, Wassom JJ (2001) Genetic relationships of common cocklebur accessions from the United States. Weed Sci 49:318–325CrossRefGoogle Scholar
  53. Vila M, Weber E, D’Antonio CM (2000) Conservation implications of invasion by plant hybridization. Biol Invasions 2:207–217CrossRefGoogle Scholar
  54. Vos P, Hogers R, Bleeker M et al (1995) AFLP—a new technique for DNA-fingerprinting. Nucleic Acids Res 23:4407–4414PubMedCrossRefGoogle Scholar
  55. Wang B, Porter AH (2004) An AFLP-based interspecific linkage map of sympatric, hybridizing Colias butterflies. Genetics 168:215–225PubMedCrossRefGoogle Scholar
  56. Whitney KD, Randell RA, Rieseberg LH (2006) Adaptive introgression of herbivore resistance traits in the weedy sunflower Helianthus annuus. Am Nat 167:794–807CrossRefGoogle Scholar
  57. Williams DA, Overholt WA, Cuda JP et al (2005) Chloroplast and microsatellite DNA diversities reveal the introduction history of Brazilian peppertree (Schinus terebinthifolius) in Florida. Mol Ecol 14:643–3656CrossRefGoogle Scholar
  58. Young WP, Ostberg CO, Keim P et al (2001) Genetic characterization of hybridization and introgression between anadromous rainbow trout (Oncorhynchus mykiss irideus) and coastal cutthroat trout (O. clarki clarki). Mol Ecol 10:921–930PubMedCrossRefGoogle Scholar
  59. Zavaleta E (2000) Valuing ecosystem services lost to Tamarix invasion in the United States. In: Mooney HA, Hobbs RJ (eds) Invasive species in a changing world. Island, Washington, pp 261–300Google Scholar

Copyright information

© U.S. Government 2008

Authors and Affiliations

  1. 1.Northern Plains Agricultural Research LaboratoryUSDA-ARSSidneyUSA

Personalised recommendations