Biological Invasions

, 11:1159

Hybridization, polyploidy and invasion: lessons from Spartina (Poaceae)

  • M. L. Ainouche
  • P. M. Fortune
  • A. Salmon
  • C. Parisod
  • M.-A. Grandbastien
  • K. Fukunaga
  • M. Ricou
  • M.-T. Misset
Original Paper

Abstract

In this paper, we examine how the Spartina system has helped our understanding of the genomic aspects of allopolyploid speciation in the context of biological invasion. More specifically the respective roles of hybridization and genome duplication in the success of newly formed allopolyploid species are explored. Hybridization appears to have triggered genetic and epigenetic changes in the two recently formed European homoploid hybrids S. × towsendii and S. × neyrautii. Deviation from parental structural additivity is observed in both hybrids, with different patterns when considering transposable element insertions or AFLP and methylation alteration. No important changes are observed in the invasive allopolyploid Spartina anglica that inherited the identical genome to S. × townsendii. The repeated rRNA genes are not homogenized in the allopolyploid, and both parental repeats are expressed in the populations examined. Transcriptomic changes suggest possible gene silencing in both hybrids and allopolyploid. In the long-term of evolutionary time, older hexaploid Spartina species (Spartina alterniflora, Spartina maritima and Spartina foliosa) appear to have selectively retained differential homeologous copies of nuclear genes. Waxy gene genealogies suggest a hybrid (allopolyploid) origin of this hexaploid lineage of Spartina. Finally, nuclear and chloroplast DNA data indicate a reticulate origin (alloheptaploid) of the invasive Spartina densiflora. All together these studies stress hybridization as a primary stimulus in the invasive success of polyploid Spartina species.

Keywords

Spartina Allopolyploidy Hybridization Invasion Genome evolution Phylogeny 

References

  1. Abbott RW, Lowe AJ (2004) Origins, establishment and evolution of new polyploid species: Senecio cambrensis and S. eboranensis in the British isles. Biol J Linn Soc 82:467–474Google Scholar
  2. Adams KL, Wendel JF (2004) Exploring the genomic mysteries of polyploidy in cotton. Biol J Linn Soc 82:573–581Google Scholar
  3. Adams KL, Wendel JF (2005) Allele-specific, bidirectional silencing of an alcohol dehydrogenase gene in different organs of interspecific diploid cotton hybrids. Genetics 171:2139–2142PubMedGoogle Scholar
  4. Adams KL, Cronn R, Percifield R, Wendel JF (2003) Genes duplicated by polyploidy show unequal contributions to the transcriptome and organ-specific reciprocal silencing. Proc Natl Acad Sci USA 100:4649–4654PubMedGoogle Scholar
  5. Ainouche ML, Baumel A, Salmon A (2004a) Spartina anglica schreb. a natural model system for analysing early evolutionary changes that affect allopolyploid genomes. Biol J Linn Soc 82:475–484Google Scholar
  6. Ainouche ML, Baumel A, Salmon A, Yannic G (2004b) Hybridization, polyploidy and speciation in Spartina Schreb. (Poaceae). New Phytol 161:165–172Google Scholar
  7. Ainouche M, Baumel A, Bayer R, Fukunaga K, Cariou T (2004c) Speciation, genetic and genomic evolution in Spartina. In: Third international conference on invasive Spartina, San Francisco, CA, 8–10 Nov 2004Google Scholar
  8. Albertin W, Balliau T, Brabant P, Chèvre A-M, Eber F, Malosse C, Thiellement H (2006) Numerous and rapid nonstochastic modifications of gene products in newly synthesized Brassica napus allotetraploids. Genetics 173:1101–1113PubMedGoogle Scholar
  9. Alvarez I, Wendel JF (2003) Ribosomal ITS sequences and plant phylogenetic inference. Mol Phylogenet Evol 29:417–434PubMedGoogle Scholar
  10. An S, Zhou S, Wang Z, Deng Z, Chen L (2004) Spartina in China: introduction, history, current status and recent research. In: Third international conference on invasive Spartina, San Francisco, CA, 8–10 Nov 2004Google Scholar
  11. Antilla K, Daehler CC, Rank NE, Strong D (1998) Greater male fitness of a rare invader (Spartina alterniflora, Poaceae) threatens a common native (Spartina foliosa) with hybridization. Am J Bot 85(11):1597–1601Google Scholar
  12. Antilla CK, King RA, Ferris C, Ayres DR, Strong DR (2000) Reciprocal hybrid formation of Spartina in San Francisco Bay. Mol Ecol 9:765–770Google Scholar
  13. Ayres DR, Lee AKF (2004) Spartina densiflora × foliosa hybrids found in San Francisco Bay. In: Third international conference on invasive Spartina, San Francisco, CA, 8–10 Nov 2004Google Scholar
  14. Ayres DR, Strong DR (2001) Origin and genetic diversity of Spartina anglica (Poaceae) using nuclear DNA markers. Am J Bot 88:1863–1867Google Scholar
  15. Ayres DR, Garcia-Rossi D, Davis HG, Strong DR (1999) Extent and degree of hybridization between exotic (Spartina alterniflora) and native (S. foliosa) cordgrass (Poaceae) in California, USA determined by randomly amplified polymorphic DNA (RAPDs). Mol Ecol 8:1179–1186Google Scholar
  16. Ayres DR, Strong DR, Baye P (2003) Spartina foliosa—a common species on the road to rarity? Madroño 50:209–213Google Scholar
  17. Ayres DR, Smith DL, Zaremba K, Klohr S, Strong DR (2004) Spread of exotic cordgrass and hybrids (Spartina sp.) in the tidal marshes of San-Francisco Bay, CA, USA. Biol Invasions 6:221–231Google Scholar
  18. Ayres DA, Zaremba K, Sloop CM, Strong DR (2007) Sexual reproduction of cordgrass hybrids (Spartina foliosa × alterniflora) invading tidal marshes in San Francisco Bay. Divers Distrib 14(2):187–195. doi:10.1111/j.1472-4642.2007.00414.x CrossRefGoogle Scholar
  19. Ayres DR, Grotkopp EK, Zaremba K et al (2008) Hybridization between invasive Spartina densiflora (poaceae) and native S. foliosa in San Francisco Bay, California, USA. Am J Bot 95:713–719Google Scholar
  20. Barrett SCH, Richardson BJ (1986) Genetic attributes of invading species. In: Groves RH, Burdon JJ (eds) Ecology of biological invasions. Cambridge University Press, Melbourne, pp 21–33Google Scholar
  21. Baumel A (2001) Contexte phylogénétique et conséquences génomiques de l’hybridation et de la polyploïdie: Les enseignements de la jeune espèce Spartina anglica C.E. Hubbard (Poacées). Thèse de Doctorat de l’Université de Rennes 1, France, 166 ppGoogle Scholar
  22. Baumel A, Ainouche ML, Levasseur JE (2001) Molecular investigations in populations of Spartina anglica C.E. Hubbard (Poaceae) invading coastal Brittany (France). Mol Ecol 10:1689–1701PubMedGoogle Scholar
  23. Baumel A, Ainouche ML, Kalendar R, Schulman AH (2002a) Retrotransposons and genomic stability in populations of the young allopolyploid species Spartina anglica C.E. Hubbard (Poaceae). Mol Biol Evol 19:1218–1227PubMedGoogle Scholar
  24. Baumel A, Ainouche ML, Bayer RJ, Ainouche AK, Misset MT (2002b) Molecular phylogeny of hybridizing species from the genus Spartina Schreb. (Poaceae). Mol Phylogenet Evol 22:303–314PubMedGoogle Scholar
  25. Baumel A, Ainouche ML, Misset MT, Gourret JP, Bayer RJ (2003) Genetic evidence for hybridization between the native Spartina maritima and the introduced Spartina alterniflora (Poaceae) in south-west France: Spartina neyrautii re-examined. Plant Syst Evol 237:87–97Google Scholar
  26. Bortolus A (2006) The austral cordgrass Spartina densiflora Brong.: its taxonomy, biogeography and natural history. J Biogeogr 33:158–168Google Scholar
  27. Boumat T, De Vries MB, Low E, Peralta G, Tanczos C, Van de Koppel J, Herman PMJ (2005) Trade-offs related to ecosystem engineering: a case study on stiffness from emerging macrophytes. Ecology 86(8):2187–2199Google Scholar
  28. Brown AHD, Marshall DR (1981) Evolutionary changes accompanying colonization in plant. In: Scudder GCE, Reveal JL (eds) Colonization, succession and stability. Blackwell Scientific Publications, Oxford, pp 351–363Google Scholar
  29. Chantret N, Salse J, Sabot F, Rahman S, Bellec A, Laubin B, Dubois I, Dossat C, Sourdille P, Joudrier P, Gautier M-F, Cattolico F, Beckert M, Aubourg S, Weissenbach J, Caboche M, Bernard M, Leroy P, Chalhoub B (2005) Molecular basis of evolutionary events that shaped the Hardness locus in diploid and polyploid wheat species (Triticum and Aegilops). Plant Cell 17:1033–1045PubMedGoogle Scholar
  30. Chen ZJ (2007) Genetic and epigenetic mechanisms for gene expression and phenotypic variation in plant polyploids. Annu Rev Plant Biol 58:377–406PubMedGoogle Scholar
  31. Chen ZJ, Ni Z (2006) Mechanisms of gene rearrangements and gene expression changes in plant polyploids. Bioessays 28:240–252PubMedGoogle Scholar
  32. Clifford M (2002) Dense-flowered cordgrass (Spartina densiflora) in Humboldt Bay. Summary and literature review. A report for the California State Coastal Conservancy, Oakland. California State Coastal Conservancy, OaklandGoogle Scholar
  33. Comai L (2000) Genetic and epigenetic interactions in allopolyploid plants. Plant Mol Biol 43:387–399PubMedGoogle Scholar
  34. Comai L, Madlung L, Josefsson C, Tyagi A (2003) Do the different parental ‘heteromes’ cause genomic shock in newly formed allopolyploids? Philos Trans R Soc B Biol Sci 358:1149–1155Google Scholar
  35. Cornette JC, Triplet P, Sournia A, Fagit C (2001) Le contrôle de la spartine en Baie de Somme: contribution à la réflexion. In: Drévès L, Chaussepied M (eds) Restauration des écosystèmes côtiers. IFREMER, Brest, France, pp 212–229Google Scholar
  36. Cottet M, De Montaudouin X, Blanchet H, Lebleu P (2007) Spartina anglica eradication experiment and in situ monitoring assess structuring strength of habitat complexity on marine macrofauna at high tidal level. Estuar Coast Shelf Sci 71:629–640Google Scholar
  37. Cui L, Wall PK, Leebens-Mack JH, Lindsay BG, Soltis DE, Doyle JJ, Soltis PS, Carlson JE, Arumuganathan K, Barakat A, Albert VA, Ma H, de Pamphilis CW (2006) Widespread genome duplications throughout the history of flowering plants. Genome Res 16:738–749PubMedGoogle Scholar
  38. Dadejová M, Lim YK, Soucková-Skalická K, Matyásek R, Grandbastien M-A, Leitch AR, Kovarík A (2007) Transcription activity of rRNA genes correlates with their tendency towards intergenomic homogenisation in Nicotiana allotetraploids. New Phytol 174:658–668PubMedGoogle Scholar
  39. Daehler CC, Strong DR (1997) Hybridization between introduced smooth cordgrass (Spartina alterniflora; Poaceae) and native California cordgrass (S. foliosa) in San Francisco Bay, California, USA. Am J Bot 81:307–313Google Scholar
  40. Dilkes BP, Comai L (2004) A differential dosage hypothesis for parental effects in seed development. Plant Cell 16:3174–3180PubMedGoogle Scholar
  41. Dolédec S, Chessel D (1994) Co-inertia analysis: an alternative method for studying species–environment relationships. Freshw Biol 31:277–294Google Scholar
  42. Doody JP (1990) Spartina—friend or foe? a conservation viewpoint. In: Gray A, Benham P (eds) Spartina anglica—a research review. Institut of Terrestrial Ecology, Natural Environment Research Council, pp 77–79Google Scholar
  43. Faber PM (2000) Good intentions gone awry. Calif Coast Ocean 16:14–17Google Scholar
  44. Ferris C, King RA, Gray AJ (1997) Molecular evidence for the maternal parentage in the hybrid origin of Spartina anglica C.E. Hubbard. Mol Ecol 6:185–187Google Scholar
  45. Fortuné PM, Schierenbeck K, Ainouche A, Jacquemin J, Wendel JF, Ainouche ML (2007) Evolutionary dynamics of Waxy and the origin of hexaploid Spartina species. Mol Phylogenet Evol 43:1040–1055PubMedGoogle Scholar
  46. Fortuné PM, Schierenbeck K, Ayres D, Bortolus A, Clatrice O, Ainouche ML (2008) The enigmatic invasive Spartina densiflora: a history of hybridizations in a polyploidy context. Mol Ecol 17:4304–4316PubMedGoogle Scholar
  47. Foucaud (1897) Un Spartina inédit. Ann Soc Sci Nat Char Inf 32:220–222Google Scholar
  48. Gray A (2004) Will Spartina anglica invade northwards with changing climate? In: Third international conference on invasive Spartina, San Francisco, CA, 8–10 Nov 2004Google Scholar
  49. Gray AJ, Benham PEM, Raybould AF (1990) Spartina anglica—the evolutionary and ecological background. In: Gray AJ, Benham PEM (eds) Spartina anglica—a research review. Institut of Terrestrial Ecology, Natural Environment Research Council, pp 5–10Google Scholar
  50. Gray AJ, Raybould AF, Brown SL (1997) The environmental impact of Spartina anglica: past, present and predicted. In Proceedings of the second international Spartina conference, Washington State University, pp 39–45Google Scholar
  51. Groves H, Groves J (1880) Spartina townsendii nobis. Rep Bot Soc Exch Club Br Id 1:37Google Scholar
  52. Guénégou MC, Levasseur JE (1993) La nouvelle espèce amphidiploïde Spartina anglica C.E. Hubbard: son origine, argumentation et implications. Biogeographica 69:125–133Google Scholar
  53. Guénégou MC, Citharel J, Levasseur JE (1988) The hybrid status of Spartina anglica (Poaceae). Enzymatic analysis of the species and the presumed parents. Can J Bot 66:1830–1833Google Scholar
  54. Hacker SD, Heimer D, Hellquist CE, Reeder TG, Reeves B, Riordan TJ Jr, Dethier MN (2001) A marine plant (Spartina anglica) invades widely varying habitats: potential mechanisms of invasion and control. Biol Invasions 3:211–217Google Scholar
  55. Hammond MER, Cooper A (2002) Spartina anglica eradication and intertidal recovery in Northern Ireland estuaries. In: Veitch CR, Clout MN (eds) Turning the tide: the eradication of invasive species. IUCN, Gland, pp 124–131Google Scholar
  56. Hedge P, Shepherd C, Dyke K (2004) Implementing the strategy for the management of rice grass, Spartina anglica in Tasmania, Australia. In: Third international conference on invasive Spartina, San Francisco, CA, 8–10 Nov 2004Google Scholar
  57. Hubbard JCE (1965) Spartina marshes in southern England: VI. Pattern of invasion in Poole harbour. J Ecol 53:799–813Google Scholar
  58. Hubbard JCE (1968) Grasses, 2nd edn. Penguin Books, LondonGoogle Scholar
  59. Hubbard JCE, Grimes BH, Marchant CJ (1978) Some observations on the ecology and taxonomy of Spartina × neyrautii and Spartina alterniflora growing in France and Spain and comparison with Spartina × townsendii and Spartina anglica. Doc Phyto 2:273–282Google Scholar
  60. Huskins CL (1930) The origin of Spartina × townsendii. Genetica 12:531–538Google Scholar
  61. IUCN (2000) World’s worst invasive alien species. In: IUCN The World Conservation Union. http://iucn.org
  62. Joly R, Rauscher JT, Sherman-Broyles SL, Brown AHD, Doyle JJ (2004) Evolutionary dynamics and preferential expression of homeologous 18S–5.8S–26S nuclear ribosomal genes in natural and artificial glycine allopolyploids. Mol Biol Evol 21(7):1409–1421PubMedGoogle Scholar
  63. Jones CG, Lawton JH, Shachak M (1994) Organisms as ecosystem engineers. Oikos 69:373–386Google Scholar
  64. Josefsson C, Dilkes B, Comai L (2006) Parent-dependent loss of gene silencing during interspecies hybridization. Curr Biol 16:1322–1328PubMedGoogle Scholar
  65. Jovet P (1941) Notes systématiques et écologiques sur les Spartines du Sud-Ouest. Bull Soc Bot Fr 88:115–123Google Scholar
  66. Kalendar R, Grob RMT, Suoniemi A, Schulman AH (1999) IRAP and REMAP: two new retrotransposon-based DNA fingerprinting techniques. Theor App Genet 98:704–711Google Scholar
  67. Kittelson PM, Boyd MJ (1997) Mechanisms of expansion for an introduced species of cordgrass, Spartina densiflora, in Humboldt Bay, California. Estuaries 20:770–778Google Scholar
  68. Kovarik A, Matyasek R, Lim KY, Skalicka K, Koukalova B, Knapp S, Chase M, Leitch AR (2004) Concerted evolution of 18–5.8–26S rDNA repeats in Nicotiana allotetraploids. Biol J Linn Soc 82:615–663Google Scholar
  69. Kovarik A, Pires JC, Leitch AR, Lim KY, Sherwood AM, Matyasek R, Rocca J, Soltis DE, Soltis PS (2005) Rapid concerted evolution of nuclear ribosomal DNA in two Tragopogon allopolyploids of recent and recurrent origin. Genetics 169:931–944PubMedGoogle Scholar
  70. Lee RW (2003) Physiological adaptations of the invasive cordgrass Spartina anglica to reducing sediments: rhizome metabolic gas fluxes and enhanced O2 and H2S transport. Mar Biol 143:9–15Google Scholar
  71. Levine DA (2003) Ecological speciation: lessons from invasive species. Syst Bot 28:643–650Google Scholar
  72. Levy AA, Feldman M (2004) Genetic and epigenetic reprogramming of the wheat genome upon allopolyploidisation. Biol J Linn Soc 82(4):607–613Google Scholar
  73. Lim KY, Matyasek M, Kovarik A, Leitch AR (2004) Genome evolution in allotetraploid Nicotiana. Biol J Linn Soc 82:599–606Google Scholar
  74. Lim KY, Kovarik A, Matyasek R, Chase MW, Clarkson JJ, Grandbastien M-A, Leitch AR (2007) Near complete genome turnover in five million years of plant evolution. New Phytol 175:756–763PubMedGoogle Scholar
  75. Liu B, Wendel JF (2003) Epignetic phenomena and the evolution of plant allopolyploids. Mol Phylogenet Evol 29:365–379PubMedGoogle Scholar
  76. Liu B, Vega JM, Segal G, Abbo S, Rodova M, Feldman M (1998) Rapid genomic changes in newly synthetized amphiploids of Triticum and Aegilops. I. Changes in low-copy noncoding DNA sequences. Genome 41:272–277Google Scholar
  77. Liu B, Brubaker CL, Mergeai G, Cronn RC, Wendel JF (2001) Polyploid formation in cotton is not accompanied by rapid genomic changes. Genome 44:321–330PubMedGoogle Scholar
  78. Loebl M, Van Beusekom JEE, Reise K (2006) Is spread of the neophyte Spartina anglica recently enhanced by increased temperatures? Aquat Ecol 40:315–324Google Scholar
  79. Long SP, Incoll LD, Woolhouse HW (1975) C4 photosynthesis in plants from cool temperate regions, with particular reference to Spartina townsendii. Nature 257:622–624Google Scholar
  80. Lynch M, Conery JS (2000) The evolutionary fate and consequences of duplicate genes. Science 290:1151–1155PubMedGoogle Scholar
  81. Lynch M, Force A (2000) The probability of duplicate gene preservation by subfunctionalization. Genetics 154:459–473PubMedGoogle Scholar
  82. Marchant CJ (1963) Corrected chromosome numbers for Spartina × townsendii and its parent species. Nature 199:929Google Scholar
  83. Marchant CJ (1968) Evolution in Spartina (Gramineae). II. Chromosomes, basic relationships and the problem of Spartina × townsendii agg. Bot J Linn Soc 60:381–409Google Scholar
  84. Maricle BR, Lee RW (2002) Aerenchyma development and oxygen transport in the estuarine cordgrasses Spartina alterniflora and S. anglica. Aquat Bot 74:109–120Google Scholar
  85. Maricle BR, Crosier JJ, Bussiere BC, Lee RW (2006) Respiratory enzyme activities correlate with anoxia tolerance in saltmarsh grasses. J Exp Mar Biol Ecol 337:30–37Google Scholar
  86. McClintock B (1984) The significance of responses of the genome to challenge. Science 256:792–801Google Scholar
  87. McLysaght A, Hokamp K, Wolfe KH (2002) Extensive genomic duplication during early chordate evolution. Nat Genet 31(2):200–204PubMedGoogle Scholar
  88. Mobberley DG (1956) Taxonomy and distribution of the genus Spartina. Iowa State Coll J Sci 30:471–574Google Scholar
  89. Nicolas SD, Le Mignon G, Eber F, Coriton O, Monod H, Clouet V, Huteau V, Lostanlen A, Delourme R, Chalhoub B, Ryder CD, Chèvre AM, Jenczewski E (2007) Homeologous recombination plays a major role in chromosome rearrangements that occur during meiosis of Brassica napus haploids. Genetics 175:487–503PubMedGoogle Scholar
  90. Nieva FJJ (1996) Aspectos ecologicos de Spartina densiflora Brong. Master’s Thesis, University of Seville, Seville, Spain, 241 ppGoogle Scholar
  91. Nieva FJJ, Castellanos EM, Figueroa ME (2002) Distribucion Peninsular y habitats ocupados por el neofito sudamericano Spartina densiflora Brong. (Gramineae). In: Panareda JM, Pinto J (eds) Temas en Biogeografia. Aster, TerrasaGoogle Scholar
  92. Novak SJ, Soltis DE, Soltis PS (1991) Ownbey’s Tragopogons: 40 years later. Am J Bot 78:1586–1600Google Scholar
  93. Ohno S (1970) Evolution by gene duplication. Springer, New YorkGoogle Scholar
  94. Osborn TC, Pires JC, Birchler JA, Auger DL, Chen ZJ, Lee HS, Comai L, Madlung A, Doerge RW, Colot V, Martienssen RA (2003) Understanding mechanisms of novel gene expression in polyploids. Trends Genet 19:141–147PubMedGoogle Scholar
  95. Pandit MK, Tan HTW, Bisht MS (2006) Polyploidy in invasive plant species of Singapore. Biol J Linn Soc 151:395–403Google Scholar
  96. Paterson A, Bowers JE, Chapman BA (2004) Ancient polyploidization predating divergence of the cereals, and its consequences for comparative genomics. Proc Natl Acad Sci USA 101:9903–9908PubMedGoogle Scholar
  97. Petit M, Lim KY, Julio E, Poncet C, Dorlhac de Borne F, Kovarik K, Leitch AR, Grandbastien MA, Mhiri C (2007) Differential impact of retrotransposon populations on the genome of allotetraploid tobacco (Nicotiana tabacum). Mol Genet Genomics 278:1–15PubMedGoogle Scholar
  98. Pires JC, Lim KY, Kovarik A, Matyasek R, Boyd A, Leitch AR, Leitch IJ, Bennett MD, Soltis PS, Soltis DE (2004) Molecular cytogenetic analysis of recently evolved Tragopogon (Asteraceae) allopolyploids reveal a karyotype that is additive of the diploid progenitors. Am J Bot 91(7):1022–1035Google Scholar
  99. Rauscher J, Doyle JJ, Brown AHD (2004) Multiple origin and internal transcribed spacer homeologue evolution in the Glycine tomentella (Leguminoseae) allopolyploid complex. Genetics 166:987–998PubMedGoogle Scholar
  100. Raybould AF, Gray AJ, Lawrence MJ, Marshall DF (1991a) The evolution of Spartina anglica C.E. Hubbard (Gramineae): origin and genetic variability. Biol J Linn Soc 43:111–126Google Scholar
  101. Raybould AF, Gray AJ, Lawrence MJ, Marshall DF (1991b) The evolution of Spartina anglica C.E. Hubbard (Gramineae): genetic variation and status of the parental species in Britain. Biol J Linn Soc 44:369–380Google Scholar
  102. Riddle NC, Birchler JA (2003) Effects of reunited diverged regulatory hierarchies in allopolyploids and species hybrids. Trends Genet 19:597–600PubMedGoogle Scholar
  103. Salmon A, Ainouche ML, Wendel JF (2005) Genetic and epigenetic consequences of recent hybridization and polyploidy in Spartina (Poaceae). Mol Ecol 14:1163–1175PubMedGoogle Scholar
  104. Sax DF, Stachowicz JJ, Brown JH, Bruno JF, Dawson MN, Gaines SD, Grosberg RK, Hastings A, Holt RD, Mayfield MM, O’Connor MI, Rice W (2007) Ecological and evolutionary insights from species invasions. Trends Ecol Evol 22(9):465–471PubMedGoogle Scholar
  105. Schierenbeck K, Ainouche ML (2006) The role of evolutionary genetics in the study of plant invasions. In: Cadotte M, Mc Mahon SM, Fukami T (eds) Conceptual ecology and invasion biology: reciprocal approaches to nature. Kluwer, Dordrecht, pp 201–229Google Scholar
  106. Skalická K, Lim KY, Matyasek R, Matzke M, Leitch AR, Kovarick A (2005) Preferential elimination of repeated DNA sequences from the paternal, Nicotiana tomenstosiformis genome donor of a synthetic alotetraploid tobacco. New Phytol 166:291–303PubMedGoogle Scholar
  107. Small RL, Wendel JF (2002) Differential evolutionary dynamics of duplicated paralogous Adh loci in allotetraploid cotton (Gossypium). Mol Biol Evol 19(5):597–607PubMedGoogle Scholar
  108. Small RL, Cronn RC, Wendel JF (2004) Use of nuclear genes for phylogeny reconstruction in plants. Aust Syst Bot 17:145–170Google Scholar
  109. Soltis DE, Soltis PS (1999) Polyploidy: recurrent formation and genome evolution. Trends Ecol Evol 14:348–352PubMedGoogle Scholar
  110. Soltis DE, Soltis PS, Pires JC, Kovarik A, Tate JA (2004) Recent and recurrent polyploidy in Tragopogon (Asteraceae): cytogenetic, genomic, and genetic comparisons. Biol J Linn Soc 82:485–501Google Scholar
  111. Song K, Lu P, Tang K, Osborn TC (1995) Rapid genome change in synthetic polyploids of Brassica and its implications for polyploid evolution. Proc Natl Acad Sci USA 92:7719–7723PubMedGoogle Scholar
  112. Spicher D, Josselyn M (1985) Spartina (Gramineae) in Northern California: distribution and taxonomic notes. Madrono 32:158–167Google Scholar
  113. Tate JA, Ni Z, Scheen AC, Koh J, Gilbert CA, Chen ZJ, Soltis PS, Soltis DE (2006) Evolution and expression of homoeologous loci in Tragopogon miscellus (Asteraceae), a recent and reciprocally formed allopolyploid. Genetics 173:1599–1611PubMedGoogle Scholar
  114. Thompson JD (1991) The biology of an invasive plant. What makes Spartina anglica so successful? Bioscience 41:393–401Google Scholar
  115. Thompson JD, McNeilly T, Gray AJ (1991a) Population variation in Spartina anglica C.E. Hubbard. I. Evidence from a common garden experiment. New Phytol 117:115–128Google Scholar
  116. Thompson JD, McNeilly T, Gray AJ (1991b) Population variation in Spartina anglica C.E. Hubbard. II Reciprocal transplants among three successional populations. New Phytol 117:129–139Google Scholar
  117. Tiffin P, Olson MS, Moyle LC (2001) Asymmetrical crossing barriers in angiosperms. Proc R Soc Lond B Biol Sci 268:861–867Google Scholar
  118. Urbanska KM, Hurka H, Landolt E, Neufler B, Mummenhoff K (1997) Hybridization and evolution in Cardamine (Brassicaceae) at Urnerboden, central Swtitzerland: biosystematic and molecular evidence. Plant Syst Evol 204:233–256Google Scholar
  119. Vicari RL, Fischer S, Madanes N, Bonaventura SM, Pancotto V (2002) Tiller population dynamics and production on Spartina densiflora (Brong) on the floodplain of the Parana River, Argentina. Wetlands 22:347–354Google Scholar
  120. Wendel JF (2000) Genome evolution in polyploids. Plant Mol Biol 42:225–249PubMedGoogle Scholar
  121. Wendel JF, Schnabel A, Seelanan T (1995) Bidirectional interlocus concerted evolution following allopolyploid speciation in cotton (Gossypium). Proc Natl Acad Sci USA 92:280–284PubMedGoogle Scholar
  122. Wolfe KH (2001) Yesterday’s polyploids and the mystery of diploidization. Nat Rev Genet 2:333–341PubMedGoogle Scholar
  123. Yannic G, Baumel A, Ainouche ML (2004) Uniformity of the nuclear and chloroplast genomes of Spartina maritima (Poaceae) a salt marshes species in decline along the Western European Coast. Heredity 93:182–188PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • M. L. Ainouche
    • 1
  • P. M. Fortune
    • 1
    • 2
  • A. Salmon
    • 1
  • C. Parisod
    • 3
  • M.-A. Grandbastien
    • 3
  • K. Fukunaga
    • 1
    • 4
  • M. Ricou
    • 1
  • M.-T. Misset
    • 1
  1. 1.Genome Evolution and Speciation Lab., CNRS UMR 6553University of Rennes 1Rennes CedexFrance
  2. 2.Laboratoire Génome et Développement des Plantes, UMR 5096 CNRS-IRDUniversité de PerpignanPerpignanFrance
  3. 3.Laboratoire de Biologie Cellulaire, Institut Jean-Pierre Bourgin, INRACentre de VersaillesVersaillesFrance
  4. 4.Faculty of Life and Environmental SciencesPrefectural University of HiroshimaShobaraJapan

Personalised recommendations