Biological Invasions

, 11:1145 | Cite as

Recent hybrid origin and invasion of the British Isles by a self-incompatible species, Oxford ragwort (Senecio squalidus L., Asteraceae)

  • Richard J. AbbottEmail author
  • Adrian C. Brennan
  • Juliet K. James
  • David G. Forbes
  • Matthew J. Hegarty
  • Simon J. Hiscock
Original Paper


Senecio squalidus is a diploid hybrid species which originated in the British Isles following the introduction of material collected from a hybrid zone on Mount Etna, Sicily, approximately 300 years ago. Introduced hybrid material was cultivated in the Oxford Botanic Garden and gave rise to the stabilized diploid hybrid species, which later spread throughout much of the UK and into some parts of Ireland. Unusually for an invasive species, S. squalidus has a strong system of sporophytic self-incompatibility (SSI) that may have become modified as a result of its recent hybrid origin and spread. First, S. squalidus contains relatively few S alleles (between 2 and 6 S alleles within individual UK populations) compared to other species with SSI (estimates average ~17 S alleles per population). This most probably reflects the population bottleneck experienced by introduced hybrid material. Second, dominance relationships among S. squalidus S alleles are more extensive than those reported in other species with SSI. Third, although pseudo-self-compatibility occurs sporadically in S. squalidus, it is not widespread, indicating that SSI is maintained in the species despite potential mate availability restrictions imposed by low numbers of S alleles. Surveys of other forms of genetic diversity in S. squalidus show that allozyme variation is reduced relative to that within the progenitor species, but Randomly Amplified Polymorphic DNA variation is relatively high. Both types of genetic variation show little or no pattern of isolation-by-distance between populations in keeping with the recent range expansion of the species. During its spread in the British Isles, S. squalidus has hybridized with the native self-compatible (SC) tetraploid species, S. vulgaris, which has led to the origin of three new SC hybrid taxa: a radiate form of S. vulgaris (var. hibernicus), a tetrapoid hybrid species (S. eboracensis) and an allohexaploid (S. cambrensis).


Hybridization Invasion Pseudo self-compatibility Self-incompatibility Senecio Speciation 



RJA and SJH are grateful to NERC for the award of several research grants and PhD studentships that allowed the work described in this paper to be conducted. We are also grateful for the comments of three reviewers on an earlier version of the manuscript.


  1. Abbott RJ (1985) Maintenance of a polymorphism for outcrossing frequency in a predominantly selfing plant. In: Haeck J, Woldedorp J (eds) Structure and functioning of plant populations, 2. North-Holland Publishing, Amsterdam, pp 277–286Google Scholar
  2. Abbott RJ (1992) Plant invasions, interspecific hybridization and the evolution of new plant taxa. Trends Ecol Evol 7:401–405CrossRefGoogle Scholar
  3. Abbott RJ, Forbes DG (1993) Outcrossing rate and self-incompatibility in the colonizing species Senecio squalidus L. Heredity 71:155–159CrossRefGoogle Scholar
  4. Abbott RJ, Forbes DG (2002) Extinction of the Edinburgh lineage of the allopolyploid neospecies Senecio cambrensis Rosser Asteraceae. Heredity 88:267-269CrossRefPubMedGoogle Scholar
  5. Abbott RJ, Irwin JA (1988) Pollinator movements and the polymorphism for outcrossing rate at the ray floret locus in groundsel, Senecio vulgaris. Heredity 60:295–299CrossRefGoogle Scholar
  6. Abbott RJ, Lowe AJ (1996) A review of hybridisation and evolution in British Senecio. In: Hind DJN, Beentje HJ (eds) Compositae: systematics. Royal Botanic Garden, London, pp 679–689Google Scholar
  7. Abbott RJ, Lowe AJ (2004) Origins, establishment and evolution of new polyploid species: Senecio cambrensis and S. eboracensis in the British Isles. Biol J Linn Soc 82:467–474CrossRefGoogle Scholar
  8. Abbott RJ, Ingram R, Noltie HJ (1983) Discovery of Senecio cambrensis Rosser in Edinburgh. Watsonia 14:407–408Google Scholar
  9. Abbott RJ, Ashton PA, Forbes DG (1992) Introgressive origin of the radiate groundsel, Senecio vulgaris L. var. hibernicus Syme: Aat-3 evidence. Heredity 68:425–435Google Scholar
  10. Abbott RJ, Bretagnolle FC, Thébaud C (1998) Evolution of a polymorphism for outcrossing rate in Senecio vulgaris: influence of germination behaviour. Evolution 52:1593–1601CrossRefGoogle Scholar
  11. Abbott RJ, James JK, Irwin JA et al (2000) Hybrid origin of the Oxford ragwort, Senecio squalidus L. Watsonia 23:123–138Google Scholar
  12. Abbott RJ, James JK, Forbes DG et al (2002) Hybrid origin of the Oxford ragwort, Senecio squalidus L.: morphological and allozyme differences between S. squalidus and S. rupestris Waldst. and Kit. Watsonia 24:17–29Google Scholar
  13. Abbott RJ, James JK, Milne RI et al (2003) Plant introductions, hybridization and gene flow. Philos Trans R Soc B 358:1123–1132CrossRefGoogle Scholar
  14. Abbott RJ, Ireland HE, Joseph L et al (2005) Recent plant speciation in Britain and Ireland: origins, establishment and evolution of four new hybrid species. Biol Environ Proc R Irish Acad 105B:173–183CrossRefGoogle Scholar
  15. Abbott RJ, Ireland HE, Rogers HJ (2007) Population decline despite high genetic diversity in the new allopolyploid species Senecio cambrensis (Asteraceae). Mol Ecol 16:1023–1033CrossRefPubMedGoogle Scholar
  16. Ashton PA, Abbott RJ (1992) Multiple origins and genetic diversity in the newly arisen allopolyploid species, Senecio cambrensis (Compositae). Heredity 68:25–32CrossRefGoogle Scholar
  17. Baker HG (1955) Self-compatibility and establishment after ‘long-distance’ dispersal. Evolution 9:347–348CrossRefGoogle Scholar
  18. Baker HG (1967) Support for Baker’s Law – as a rule. Evolution 21:853–856CrossRefGoogle Scholar
  19. Bleeker W (2003) Hybridization and Rorippa austriaca (Brassicaceae) invasion in Germany. Mol Ecol 12:1831–1841CrossRefPubMedGoogle Scholar
  20. Bleeker W, Schmitz U, Ristow M (2007) Interspecific hybridization between native and alien plant species in Germany and its consequences for native biodiversity. Biol Conserv 137:248–253CrossRefGoogle Scholar
  21. Brennan AC (2003) The population genetics of sporophytic self-incompatibility in Senecio squalidus L. (Asteraceae). D.Phil. dissertation, University of Oxford, UKGoogle Scholar
  22. Brennan AC, Harris SA, Tabah DA et al (2002) The population genetics of sporophytic self-incompatibility in Senecio squalidus L. (Asteraceae) I. S allele diversity in a natural population. Heredity 89:430–438CrossRefPubMedGoogle Scholar
  23. Brennan AC, Harris SA, Hiscock SJ (2003a) The population genetics of sporophytic self-incompatibility in Senecio squalidus L. (Asteraceae) II. A spatial autocorrelation approach to determining mating behaviour in the presence of low S allele diversity. Heredity 91:502–509CrossRefPubMedGoogle Scholar
  24. Brennan AC, Harris SA, Hiscock SJ (2003b) The population genetics of sporophytic self-incompatibility in Senecio squalidus L. (Asteraceae): avoidance of mating constraints imposed by low S allele number. Philos Trans R Soc Lond B 358:1047–1050CrossRefGoogle Scholar
  25. Brennan AC, Harris SA, Hiscock SJ (2005) Modes and rates of selfing and associated inbreeding depression in the self-incompatible plant Senecio squalidus (Asteraceae): a successful colonizing species in the British Isles. New Phytol 168:475–486CrossRefPubMedGoogle Scholar
  26. Brennan AC, Harris SA, Hiscock SJ (2006) The population genetics of sporophytic self-incompatibility in Senecio squalidus L. (Asteraceae): S allele diversity across the British range. Evolution 60:213–224PubMedGoogle Scholar
  27. Brochmann C, Gabrielsen TM, Nordal I et al (2003) Glacial survival or tabula rasa? The history of North Atlantic biota revisited. Taxon 52:417–450CrossRefGoogle Scholar
  28. Byers DL, Meagher TR (1992) Mate availability in small populations of plant-species with homomorphic sporophytic self-incompatibility. Heredity 69:353–359Google Scholar
  29. Cheptou PO, Lepart J, Escarre J (2002) Mating system variation along a successional gradient in the allogamous and colonizing plant Crepis sancta (Asteraceae). J Evol Biol 15:753–762CrossRefGoogle Scholar
  30. Crisp P (1972) Cytotaxonomic studies in the Section Annui of Senecio. PhD dissertation, University of London, UKGoogle Scholar
  31. Druce GC (1927) The flora of Oxfordshire, 2nd edn. Clarendon, OxfordGoogle Scholar
  32. Ellstrand NC, Schierenbeck KA (2000) Hybridization as a stimulus for the evolution of invasiveness in plants? Proc Nat Acad Sci USA 97:7043–7050CrossRefPubMedGoogle Scholar
  33. Fuertes Aguilar J, Rosello JA, Nieto Feliner G (1999) Molecular evidence for the compilospecies model of reticulate evolution in Armeria (Plumbaginaceae). Syst Bot 48:735–754Google Scholar
  34. Gross BL, Rieseberg LH (2005) The ecological genetics of homoploid hybrid speciation. J Hered 96:241–252CrossRefPubMedGoogle Scholar
  35. Gurevitch J, Padilla DK (2004) Are invasive species a major cause of extinctions? Trends Ecol Evol 19:470–474CrossRefPubMedGoogle Scholar
  36. Harlan JR, de Wet JMJ (1963) The compilospecies concept. Evolution 17:497–501CrossRefGoogle Scholar
  37. Harris SA (2002) Introduction of Oxford ragwort, Senecio squalidus L. (Asteraceae), to the United Kingdom. Watsonia 24:31–43Google Scholar
  38. Harris SA, Ingram R (1992) Molecular systematics of the genus Senecio L. I. Hybridization in a British polyploid complex. Heredity 69:1–10CrossRefGoogle Scholar
  39. Hegarty MJ, Jones JM, Wilson ID et al (2005) Development of anonymous cDNA microarrays to study changes to the Senecio floral transcriptome during hybrid speciation. Mol Ecol 14:2493–2510CrossRefPubMedGoogle Scholar
  40. Hegarty MJ, Barker GL, Wilson ID et al (2006) Transcriptome shock after interspecific hybridization in Senecio is ameliorated by genome duplication. Curr Biol 16:1652–1659CrossRefPubMedGoogle Scholar
  41. Hegarty MJ, Barker GL, Brennan AC et al (2009) Extreme changes to gene expression associated with homoploid hybrid speciation. Mol Ecol (in press)Google Scholar
  42. Hiscock SJ (2000a) Genetic control of self-incompatibility in Senecio squalidus L. (Asteraceae): a successful colonizing species. Heredity 85:10–19CrossRefPubMedGoogle Scholar
  43. Hiscock SJ (2000b) Self-incompatibility in Senecio squalidus L. (Asteraceae). Ann Bot 85(Supplement A):181–190CrossRefGoogle Scholar
  44. Hiscock SJ, McInnis SM (2003) Pollen recognition and rejection during the sporophytic self-incompatibility response—Brassica and beyond. Trends Plant Sci 8:606–613CrossRefPubMedGoogle Scholar
  45. Hiscock SJ, Tabah DA (2003) The different mechanisms of sporophytic self-incompatibility. Philos Trans R Soc Lond B 358:1037–1045CrossRefGoogle Scholar
  46. Hiscock SJ, McInnis SM, Tabah DA et al (2003) Sporophytic self-incompatibility in Senecio squalidus (Asteraceae)—the search for S. J Exp Bot 54:169–174CrossRefPubMedGoogle Scholar
  47. Huey RB, Gilchrist GW, Carlson ML et al (2000) Rapid evolution of a geographic cline in size in an introduced fly. Science 287:308–309CrossRefPubMedGoogle Scholar
  48. Ingram R, Noltie HJ (1995) Biological Flora of the British Isles: Senecio cambrensis Rosser. J Ecol 83:537–546CrossRefGoogle Scholar
  49. Ingram R, Weir J, Abbott RJ (1980) New evidence for the hybrid origin of inland radiate groundsel, S. vulgaris L. var. hibernicus Syme. New Phytol 84:543–546CrossRefGoogle Scholar
  50. Irwin JA, Abbott RJ (1992) Morphometric and isozyme evidence for the hybrid origin of a new tetraploid radiate groundsel in York, England. Heredity 69:431–439Google Scholar
  51. James JK, Abbott RJ (2005) Recent, allopatric, homoploid hybrid speciation: the origin of Senecio squalidus (Asteraceae) in the British Isles from a hybrid zone on Mount Etna, Sicily. Evolution 59:2533–2547PubMedGoogle Scholar
  52. Kent DH (1955) Scottish records of Senecio squalidus L. Proc Bot Soc Br Isles 1:312–313Google Scholar
  53. Kent DH (1956) Senecio squalidus L. in the British Isles. 1. Early records (to 1877). Proc Bot Soc Br Isles 2:115–118Google Scholar
  54. Kent DH (1957) Senecio squalidus L. in the British Isles. 3. East Anglia. Trans. Norfolk Norwich Nat Soc 18:30–31Google Scholar
  55. Kent DH (1960) Senecio squalidus L. in the British Isles. 2. The spread from Oxford. Proc Bot Soc Br Isles 4:375–379Google Scholar
  56. Kent DH (1963) Senecio squalidus L. in the British Isles. 7. Wales. Nat Wales 8:175–178Google Scholar
  57. Kent DH (1964a) Senecio squalidus L. in the British Isles. 4. Southern England (1940–). Proc Bot Soc Br Isles 5:210–213Google Scholar
  58. Kent DH (1964b) Senecio squalidus L. in the British Isles. 5. The Midlands (1940–). Proc Bot Soc Br Isles 5:214–216Google Scholar
  59. Kent DH (1964c) Senecio squalidus L. in the British Isles. 6. Northern England (1940–). Proc Bot Soc Br Isles 5:217–219Google Scholar
  60. Kent DH (1966) Senecio squalidus L. in the British Isles. 4. The recent spread in Scotland. Glasgow Nat 18:407–408Google Scholar
  61. Kim M, Cui M-L, Cubas P et al (2008) Regulatory genes control a key morphological and ecological trait transferred between species. Science (in press)Google Scholar
  62. Lane MD, Lawrence MJ (1993) The population genetics of the self-incompatibility polymorphism in Papaver rhoeas VII. The number of S alleles in the species. Heredity 71:592–602CrossRefGoogle Scholar
  63. Lawrence MJ (2000) Population genetics of the homomorphic SI polymorphism in flowering plants. Ann Bot 85(Suppl. A):221–226CrossRefGoogle Scholar
  64. Lee CE (2002) Evolutionary genetics of invasive species. Trends Ecol Evol 17:386–391CrossRefGoogle Scholar
  65. Levin DA (1996) The evolutionary significance of pseudo-self-fertility. Am Nat 148:321–332CrossRefGoogle Scholar
  66. Lexer C, Welch ME, Raymond O et al (2003) The origin of ecological divergence in Helianthus paradoxus (Asteraceae): selection on transgressive characters in a novel hybrid habitat. Evolution 57:1989–2000PubMedGoogle Scholar
  67. Lowe AJ, Abbott RJ (2003) A new British species of Senecio (Asteraceae), another hybrid derivative of S. vulgaris L. and S. squalidus L. Watsonia 24:375–388Google Scholar
  68. Lowe AJ, Abbott RJ (2004) Reproductive isolation of a new hybrid species, Senecio eboracensis Abbott & Lowe. Heredity 92:386–395CrossRefPubMedGoogle Scholar
  69. Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220PubMedGoogle Scholar
  70. Marshall DF, Abbott RJ (1980) On the frequency of introgression of the radiate (Tr) allele from Senecio squalidus L. into S. vulgaris L. Heredity 45:133–135CrossRefGoogle Scholar
  71. Marshall DF, Abbott RJ (1982) Polymorphism for outcrossing frequency at the ray floret locus in S. vulgaris L. I. Evidence. Heredity 48:227–235CrossRefGoogle Scholar
  72. Marshall DF, Abbott RJ (1984a) Polymorphism for outcrossing frequency at the ray floret locus in S. vulgaris L. II. Confirmation. Heredity 52:331–336CrossRefGoogle Scholar
  73. Marshall DF, Abbott RJ (1984b) Polymorphism for outcrossing frequency at the ray floret locus in S. vulgaris L. III. Causes. Heredity 53:145–149CrossRefGoogle Scholar
  74. Milne RI, Abbott RJ (2000) Origin and evolution of invasive naturalised material of Rhododendron ponticum L. in the British Isles. Mol Ecol 9:541–556CrossRefPubMedGoogle Scholar
  75. Nielsen LR, Siegismund HR, Philipp M (2003) Partial self-incompatibility in the polyploid endemic species Scalesia affinis (Asteraceae) from the Galapagos: remnants of a self-incompatibility system? Bot J Linn Soc 142:93–101CrossRefGoogle Scholar
  76. Oxford GS, Andrews T (1977) Variation in characters affecting fitness between radiate and non-radiate morphs in natural populations of groundsel (Senecio vulgaris L.). Heredity 38:367–371CrossRefGoogle Scholar
  77. Peakall R, Smouse PE (2006) Genalex 6: genetic analysis in excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295CrossRefGoogle Scholar
  78. Pimentel D (ed) (2002) Biological invasions. CRC Press, Boca RatonGoogle Scholar
  79. Preston CD, Pearman DA, Dines TD (2002) New Atlas of the British and Irish flora. Oxford University Press, OxfordGoogle Scholar
  80. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedGoogle Scholar
  81. Radford IJ (1997) Impact assessment for the biological control of Senecio madagascariensis Poir. (Fireweed). PhD dissertation, University of Sydney, AustraliaGoogle Scholar
  82. Reinartz JA, Les DH (1994) Bottleneck-induced dissolution of self-incompatibility and breeding system consequences in Aster furcatus (Asteraceae). Am J Bot 81:446–455CrossRefGoogle Scholar
  83. Rieseberg LH, Ellstrand NC (1993) What can molecular and morphological markers tell us about plant hybridization? Crit Rev Plant Sci 12:213–241CrossRefGoogle Scholar
  84. Rieseberg LH, Beckstron-Sternberg SM, Liston A et al (1991) Phylogenetic and systematic inferences from chloroplast DNA and isozyme variation in Helianthus sect. Helianthus (Asteraceae). Syst Bot 16:50–76CrossRefGoogle Scholar
  85. Rieseberg LH, Archer MA, Wayne RK (1999) Transgressive segregation, adaptation and speciation. Heredity 83:363–372CrossRefPubMedGoogle Scholar
  86. Rieseberg LH, Raymond O, Rosenthal DM et al (2003) Major ecological transitions in wild sunflowers facilitated by hybridization. Science 301:1211–1216CrossRefPubMedGoogle Scholar
  87. Rieseberg LH, Kim S-C, Randell RA et al (2007) Hybridization and the colonization of novel habitats by annual sunflowers. Genetica 129:149–165CrossRefPubMedGoogle Scholar
  88. Rosser EM (1955) A new British species of Senecio. Watsonia 3:228–232Google Scholar
  89. Sax DF, Gaines SD (2003) Species diversity: from global decreases to local increases. Trends Ecol Evol 18:561–566CrossRefGoogle Scholar
  90. Shiba H, Iwano M, Entani T et al (2002) The dominance of alleles controlling self-incompatibility in Brassica pollen at the RNA level. Plant Cell 14:491–504CrossRefPubMedGoogle Scholar
  91. Shiba H, Kakizaki T, Iwano M et al (2006) Dominance relationships between self-incompatiility alleles controlled by DNA methylation. Nat Genet 38:297–299CrossRefPubMedGoogle Scholar
  92. Sibthorp J (1794) Flora oxoniensis, exhibens plantas in agro oxoniensis sponte crescentes, secundum Systema Sexuale Distributas. Oxoni Typis Academicus, OxfordGoogle Scholar
  93. Stebbins GL (1957) Self fetilization and population variability in higher plants. Am Nat 91:337–354CrossRefGoogle Scholar
  94. Stephenson AG, Good SV, Vogler DW (2000) Interrelationships among inbreeding depression, plasticity in the self-incompatibility system, and the breeding system of Campanula rapunculoides L. (Campanulaceae). Ann Bot 85(Supplement A):211–220CrossRefGoogle Scholar
  95. Sun M, Ritland K (1998) Mating system of yellow starthistle (Centaurea solstitialis), a successful colonizer in North America. Heredity 80:225–232CrossRefGoogle Scholar
  96. Tabah DA (2004) Studies of self-incompatibility in Senecio squalidus L. (Asteraceae). PhD dissertation, University of Bristol, UKGoogle Scholar
  97. Tabah DA, McInnis SM, Hiscock SJ (2004) Members of the S-receptor kinase multigene family in Senecio squalidus L. (Asteraceae), a species with sporophytic self-incompatibility. Sex Plant Reprod 18:1–10Google Scholar
  98. Trow AH (1912) On the inheritance of certain characters in the common groundsel—Senecio vulgaris—and its segregates. J Genet 2:239–276CrossRefGoogle Scholar
  99. Vekemans X, Schierup MH, Christiansen FB (1998) Mate availability and fecundity selection in multi-allelic self-incompatibility systems in plants. Evolution 52:19–29CrossRefGoogle Scholar
  100. Vogler DW, Kalisz S (2001) Sex among the flowers: the distribution of plant mating systems. Evolution 55:202–204PubMedGoogle Scholar
  101. Vogler DW, Das C, Stephenson AG (1998) Phenotypic plasticity in the expression of self-incompatibility in Campanula rapunculoides. Heredity 81:546–555CrossRefGoogle Scholar
  102. Walker R (1833) Flora of Oxfordshire and its contiguous counties. Slatter, OxfordGoogle Scholar
  103. Walker KJ (2007) The last 35 years: recent changes in the flora of the British Isles. Watsonia 26:291–302Google Scholar
  104. Weber E, Schmid B (1998) Latitudinal population differentiation in two species of Solidago (Asteraceae) introduced into Europe. Am J Bot 85:1110–1121CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Richard J. Abbott
    • 1
    Email author
  • Adrian C. Brennan
    • 1
    • 2
  • Juliet K. James
    • 1
  • David G. Forbes
    • 1
  • Matthew J. Hegarty
    • 2
  • Simon J. Hiscock
    • 2
  1. 1.Mitchell Building, School of BiologyUniversity of St AndrewsSt Andrews, FifeUK
  2. 2.School of Biological ScienceUniversity of BristolBristolUK

Personalised recommendations