Biological Invasions

, 11:1421 | Cite as

Invaders interfere with native parasite–host interactions

  • David W. ThieltgesEmail author
  • Karsten Reise
  • Katrin Prinz
  • K. Thomas Jensen
Original Paper


The introduction of species is of increasing concern as invaders often reduce the abundance of native species due to a variety of interactions like habitat engineering, predation and competition. A more subtle and not recognized effect of invaders on their recipient biota is their potential interference with native parasite–host interactions. Here, we experimentally demonstrate that two invasive molluscan filter-feeders of European coastal waters interfere with the transmission of free-living infective trematode larval stages and hereby mitigate the parasite burden of native mussels (Mytilus edulis). In laboratory mesocosm experiments, the presence of Pacific oysters (Crassostrea gigas) and American slipper limpets (Crepidula fornicata) reduced the parasite load in mussels by 65–77% and 89% in single and mixed species treatments, respectively. Both introduced species acted as decoys for the trematodes thus reducing the risk of hosts to become infected. This dilution effect was density-dependent with higher reductions at higher invader densities. Similar effects in a field experiment with artificial oyster beds suggest the observed dilution effect to be relevant in the field. As parasite infections have detrimental effects on the mussel hosts, the presence of the two invaders may elicit a beneficial effect on mussels. Our experiments indicate that introduced species alter native parasite–hosts systems thus extending the potential impacts of invaders beyond the usually perceived mechanisms.


Introduced species Dilution effect Parasitism Transmission Trematodes Cercariae 



We wish to thank Maria Donas-Bôtto Bordalo and Alejandro Caballero Hernández for help with the experiments. For help with the ring experiment at Sylt we thank Christian Buschbaum, Patrick Polte and Nils Volkenborn. This work was supported by a fellowship to DWT within the Postdoc-Programme of the German Academic Exchange Service (DAAD).


  1. Aguirre-Macedo ML, Kennedy CR (1999) Diversity of metazoan parasites of the introduced oyster species Crassostrea gigas in the Exe Estuary. J Mar Biol Assoc UK 79:57–63. doi: 10.1017/S002531549800006X CrossRefGoogle Scholar
  2. Bartoli P, Boudouresque C-F (1997) Transmission failure of parasites (Digenea) in sites colonized by the recently introduced invasive alga Caulerpa taxifolia. Mar Ecol Prog Ser 154:253–260. doi: 10.3354/meps154253 CrossRefGoogle Scholar
  3. Buck BH, Thieltges DW, Walter U, Nehls G, Rosenthal H (2005) Inshore–offshore comparison of parasite infestation in Mytilus edulis: implications for open ocean aquaculture. J Appl Ichthyol 21:107–113. doi: 10.1111/j.1439-0426.2004.00638.x CrossRefGoogle Scholar
  4. Chernin E, Perlstein JM (1971) Protection of snails against miracidia of Schistosoma mansoni by various aquatic invertebrates. J Parasitol 57:217–219. doi: 10.2307/3278017 PubMedCrossRefGoogle Scholar
  5. Christensen NO, Frandsen F, Nansen P (1980) The interaction of some environmental factors influencing Schistosoma mansoni cercarial host-finding. J Helminthol 54:203–205PubMedCrossRefGoogle Scholar
  6. Day RW, Quinn GP (1989) Comparisons of treatments after an analysis of variance in ecology. Ecol Monogr 59:433–463. doi: 10.2307/1943075 CrossRefGoogle Scholar
  7. Diederich S (2005) Differential recruitment of introduced Pacific oysters and native mussels at the North Sea coast: coexistence possible? J Sea Res 53:269–281. doi: 10.1016/j.seares.2005.01.002 CrossRefGoogle Scholar
  8. Diederich S, Nehls G, van Beusekom JEE, Reise K (2005) Introduced Pacific oysters (Crassostrea gigas) in the northern Wadden Sea: invasion accelerated by warm summers? Helgol Mar Res 59:97–106. doi: 10.1007/s10152-004-0195-1 CrossRefGoogle Scholar
  9. Fredensborg BL, Mouritsen KN, Poulin R (2004) Intensity-dependent mortality of Paracalliope novizealandiae (Amphipoda: Crustacea) infected by a trematode: experimental infections and field observations. J Exp Mar Biol Ecol 311:253–265. doi: 10.1016/j.jembe.2004.05.011 CrossRefGoogle Scholar
  10. Gozlan RE, St-Hilaire S, Feist SW, Martin P, Kents ML (2005) Disease threat to European fish. Nature 435:1046. doi: 10.1038/4351046a PubMedCrossRefGoogle Scholar
  11. Jensen KT, Castro N, Bachelet G (1999) Infectivity of Himasthla spp. (Trematoda) in cockle (Cerastoderma edule) spat. J Mar Biol Assoc UK 79:265–271. doi: 10.1017/S0025315498000290 CrossRefGoogle Scholar
  12. Keesing F, Holt RD, Ostfeld RS (2006) Effects of species diversity on disease risk. Ecol Lett 9:485–498. doi: 10.1111/j.1461-0248.2006.00885.x PubMedCrossRefGoogle Scholar
  13. Kennedy CR (1993) Introductions, spread and colonization of new localities by fish helminth and crustacean parasites in the British Isles: a perspective and appraisal. J Fish Biol 43:287–301. doi: 10.1111/j.1095-8649.1993.tb00429.x CrossRefGoogle Scholar
  14. Kittner C, Riisgård HU (2005) Effect of temperature on filtration rate in the mussel Mytilus edulis: no evidence for temperature compensation. Mar Ecol Prog Ser 305:147–152. doi: 10.3354/meps305147 CrossRefGoogle Scholar
  15. Kopp K, Jokela J (2007) Resistant invaders can convey benefits to native species. Oikos 116:295–301. doi: 10.1111/j.0030-1299.2007.15290.x CrossRefGoogle Scholar
  16. Krakau M, Thieltges DW, Reise K (2006) Native parasites adopt introduced bivalves of the North Sea. Biol Invasions 8:919–925. doi: 10.1007/s10530-005-4734-8 CrossRefGoogle Scholar
  17. Lauckner G (1983) Diseases of Mollusca: Bivalvia. In: Kinne O (ed) Diseases of marine animals vol 2: introduction, Bivalvia to Scaphopoda. Biologische Anstalt Helgoland, Hamburg, pp 477–961Google Scholar
  18. Lesser MP, Shumway SE, Cucci T, Smith J (1992) Impact of fouling organisms on mussel rope culture: interspecific competition for food among suspension-feeding invertebrates. J Exp Mar Biol Ecol 165:91–102. doi: 10.1016/0022-0981(92)90291-H CrossRefGoogle Scholar
  19. Mooney HA, Mack RN, McNeely JA (eds) (2005) Invasive alien species: a new synthesis. Island Press, Washington, DCGoogle Scholar
  20. Morley NJ, Lewis JW (2004) Free-living endohelminths: the influence of multiple factors. Trends Parasitol 20:114–115. doi: 10.1016/ PubMedCrossRefGoogle Scholar
  21. Mouritsen KN, Poulin R (2003) The mud flat anemone-cockle association: mutualism in the intertidal zone? Oecologia 135:131–137PubMedGoogle Scholar
  22. Mouritsen KN, McKechnie S, Meenken E, Toynbee J, Poulin R (2003) Spatial heterogeneity in parasite loads in the New Zealand cockle: the importance of host condition and density. J Mar Biol Assoc UK 83:307–310. doi: 10.1017/S0025315403007124h CrossRefGoogle Scholar
  23. Nehls G, Diederich S, Thieltges DW, Strasser M (2006) Wadden Sea mussel beds invaded by oysters and slipper limpets—competition or climate control? Helgol Mar Res 60:135–143. doi: 10.1007/s10152-006-0032-9 CrossRefGoogle Scholar
  24. Newell RC, Kofoed LH (1977) The energetics of suspension-feeding in the gastropod Crepidula fornicata L. J Mar Biol Assoc UK 57:161–180CrossRefGoogle Scholar
  25. Olden JD, Poff NL, Douglas MR, Douglas ME, Fausch KD (2004) Ecological and evolutionary consequences of biotic homogenisation. Trends Ecol Evol 19:18–24. doi: 10.1016/j.tree.2003.09.010 PubMedCrossRefGoogle Scholar
  26. Ostfeld RS, Keesing F (2000) Biodiversity and disease risk: the case of Lyme disease. Conserv Biol 14:722–728. doi: 10.1046/j.1523-1739.2000.99014.x CrossRefGoogle Scholar
  27. Pechenik JA, Fried B, Simpkins HL (2001) Crepidula fornicata is not a first intermediate host for trematodes, who is? J Exp Mar Biol Ecol 261:211–224. doi: 10.1016/S0022-0981(01)00270-2 PubMedCrossRefGoogle Scholar
  28. Pietrock M, Marcogliese DJ (2003) Free-living endohelminth stages: at the mercy of environmental conditions. Trends Parasitol 19:293–299. doi: 10.1016/S1471-4922(03)00117-X PubMedCrossRefGoogle Scholar
  29. Pimentel D (ed) (2002) Biological invasions—economic and environmental costs of alien plant, animal, and microbe species. CRC Press, Boca Raton, FLGoogle Scholar
  30. Ren JS, Ross AH, Schiel DR (2000) Functional descriptions of feeding and energetics of the Pacific oyster Crassostrea gigas in New Zealand. Mar Ecol Prog Ser 208:119–130. doi: 10.3354/meps208119 CrossRefGoogle Scholar
  31. Ropert M, Goulletquer P (2000) Comparative physiological energetics of two suspension feeders: polychaete annelid Lanice conchilega (Pallas 1766) and Pacific cupped oyster Crassostrea gigas (Thunberg 1795). Aquaculture 181:171–189. doi: 10.1016/S0044-8486(99)00216-1 CrossRefGoogle Scholar
  32. Sax DF, Stachowicz JJ, Gaines ST (eds) (2005) Species invasions: insights into ecology, evolution and biogeography. Sinauer Associates, Sunderland, MassachusettsGoogle Scholar
  33. Taraschewski H (2006) Hosts and parasites as aliens. J Helminthol 80:99–128. doi: 10.1079/JOH2006364 PubMedCrossRefGoogle Scholar
  34. Thieltges DW (2005) Impact of an invader: epizootic American slipper limpet Crepidula fornicata reduces survival and growth in European mussels. Mar Ecol Prog Ser 286:13–19. doi: 10.3354/meps286013 CrossRefGoogle Scholar
  35. Thieltges DW (2006) Effect of metacercarial trematode infections (Renicola roscovita) on growth in intertidal blue mussels (Mytilus edulis). Mar Ecol Prog Ser 319:129–134. doi: 10.3354/meps319129 CrossRefGoogle Scholar
  36. Thieltges DW, Reise K (2007) Spatial heterogeneity in parasite infections at different scales in an intertidal bivalve. Oecologia 150:569–581. doi: 10.1007/s00442-006-0557-2 PubMedCrossRefGoogle Scholar
  37. Thieltges DW, Rick J (2006) Effect of temperature on emergence, survival and infectivity of cercariae of the marine trematode Renicola roscovita (Digenea: Renicolidae). Dis Aquat Organ 73:63–68. doi: 10.3354/dao073063 PubMedCrossRefGoogle Scholar
  38. Thieltges DW, Strasser M, Reise K (2003) The American slipper-limpet Crepidula fornicata (L.) in the Northern Wadden Sea 70 years after its introduction. Helgol Mar Res 57:27–33Google Scholar
  39. Thieltges DW, Strasser M, van Beusekom JEE, Reise K (2004) Too cold to prosper—winter mortality prevents population increase of the introduced American slipper limpet Crepidula fornicata in northern Europe. J Exp Mar Biol Ecol 311:375–391. doi: 10.1016/j.jembe.2004.05.018 CrossRefGoogle Scholar
  40. Thieltges DW, Jensen KT, Poulin R (2008a) The role of biotic factors in the transmission of free-living endohelminth stages. Parasitology 135:407–426. doi: 10.1017/S0031182007000248 PubMedGoogle Scholar
  41. Thieltges DW, Donas-Botto Bordalo M, Cabalero Hernández A, Prinz K, Jensen KT (2008b) Ambient fauna impairs parasite transmission in a marine parasite–host system. Parasitology 135:1111–1116PubMedGoogle Scholar
  42. Torchin ME, Lafferty KD, Dobson AP, McKenzie VJ, Kuris AM (2003) Introduced species and their missing parasites. Nature 421:628–630. doi: 10.1038/nature01346 PubMedCrossRefGoogle Scholar
  43. Torchin ME, Lafferty KD, Kuris AM (2002) Parasites and marine invasions. Parasitology 124:S137–S151. doi: 10.1017/S0031182002001506 CrossRefGoogle Scholar
  44. Upatham ES, Sturrock RF (1973) Field investigations on the effect of other aquatic animals on the infection of Biomphalaria glabrata by Schistosoma mansoni miracidia. J Parasitol 59:448–453. doi: 10.2307/3278770 PubMedCrossRefGoogle Scholar
  45. Wegeberg AM, de Montaudouin X, Jensen KT (1999) Effect of intermediate host size (Cerastoderma edule) on infectivity of cercariae of three Himasthla species (Echinostomatidae, Trematoda). J Exp Mar Biol Ecol 238:259–269. doi: 10.1016/S0022-0981(98)00177-4 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • David W. Thieltges
    • 1
    • 2
    Email author
  • Karsten Reise
    • 3
  • Katrin Prinz
    • 3
  • K. Thomas Jensen
    • 1
  1. 1.Marine Ecology, Department of Biological SciencesUniversity of AarhusAarhusDenmark
  2. 2.Department of ZoologyUniversity of OtagoDunedinNew Zealand
  3. 3.Alfred Wegener Institute for Polar and Marine ResearchListGermany

Personalised recommendations