Biological Invasions

, Volume 11, Issue 4, pp 1017–1031 | Cite as

Consensual predictions of potential distributional areas for invasive species: a case study of Argentine ants in the Iberian Peninsula

  • Núria Roura-Pascual
  • Lluís Brotons
  • A. Townsend Peterson
  • Wilfried Thuiller
Original Paper


Invasive species are known to influence the structure and function of invaded ecological communities, and preventive measures appear to be the most efficient means of controlling these effects. However, management of biological invasions requires use of adequate tools to understand and predict invasion patterns in recently introduced areas. The present study: (1) estimates the potential geographic distribution and ecological requirements of the Argentine ant (Linepithema humile Mayr), one of the most conspicuous invasive species throughout the world, in the Iberian Peninsula using ecological niche modeling, and (2) provides new insights into the process of selection of consensual areas among predictions from several modeling methodologies. Ecological niche models were developed using 5 modeling techniques: generalized linear models (GLM), generalized additive models (GAM), generalized boosted models (GBM), Genetic Algorithm for Rule-Set Prediction (GARP), and Maximum Entropy (Maxent). Models for the eastern and western portions of the Iberian Peninsula were built using subsets of occurrence and environmental data to investigate the potential for ecological niche differences between the invading populations. Our results indicate geographic differences between predictions of different approaches, and the utility of ensemble predictions in identifying areas of uncertainty regarding the species’ invasive potential. More generally, our models predict coastal areas and major river corridors as highly suitable for Argentine ants, and indicate that western and eastern Iberian Peninsula populations occupy similar environmental conditions.


Biological invasions Consensual areas Ecological differences Genetic Algorithm for Rule-Set Prediction (GARP) Generalized additive models (GAM) Generalized boosted models (GBM) Generalized linear models (GLM) Iberian Peninsula Invasive ants Linepithema humile Maximum Entropy (Maxent) 



Special thanks to P. Pons, C. Gómez and E. Knox-Davis for their comments on the manuscript, and M. Clavero, S. Phillips, and J. Hortal for statistical guidance. X. Espadaler provided useful comments on historical data of the Argentine ant invasion in the Iberian Peninsula. This research was funded by the Ministry of Education and Science CGL2004-05240-C02-02/BOS and MEC/FEDER2007-64080-C02-02/BOS of the Spanish Government in support of N. Roura-Pascual, and is a contribution to the European Research Group GDRE “Mediterranean and mountain systems in a changing world”. N. Roura-Pascual benefited from a Beatriu de Pinós postdoctoral grant (2006 BP-A 10124) from Catalan Agency for Management of University and Research Grants, and L. Brotons from a Ramon y Cajal contract from the Spanish government. W. Thuiller was partly funded by the EU FP6 MACIS specific targeted project (Minimisation of and Adaptation to Climate change: Impacts on biodiversity N° 044399) and EU FP6 ECOCHANGE integrated project (Challenges in assessing and forecasting biodiversity and ecosystem changes in Europe).


  1. Abril S (2005) Ecologia alimentària de la formiga argentina (Linepithema humile) en ecosistemes naturals: activitat d’extracció de melassa de Quercus suber i dieta sòlida. Universitat de Girona, DissertationGoogle Scholar
  2. Akaike H (1974) A new look at the statistical model identification. IEEE Trans Automat Contr 19:716–723. doi: 10.1109/TAC.1974.1100705 CrossRefGoogle Scholar
  3. Anderson RP, Lew D, Peterson AT (2003) Evaluating predictive models of species’ distributions: criteria for selecting optimal models. Ecol Model 162:211–232. doi: 10.1016/S0304-3800(02)00349-6 CrossRefGoogle Scholar
  4. Araújo MB, Guisan A (2006) Five (or so) challenges for species distribution modelling. J Biogeogr 33:1677–1688. doi: 10.1111/j.1365-2699.2006.01584.x CrossRefGoogle Scholar
  5. Araújo MB, New M (2007) Ensemble forecasting of species distributions. Trends Ecol Evol 22:42–47. doi: 10.1016/j.tree.2006.09.010 PubMedCrossRefGoogle Scholar
  6. Araújo MB, Thuiller W, Pearson RG (2006) Climate warming and the decline of amphibians and reptiles in Europe. J Biogeogr 33:1712–1728. doi: 10.1111/j.1365-2699.2006.01482.x CrossRefGoogle Scholar
  7. Breiman L, Friedman JH, Olshen RA et al (1984) Classification and regression trees. Chapman and Hall, New YorkGoogle Scholar
  8. Broennimann O, Treier UA, Muller-Scharer H et al (2007) Evidence of climatic niche shift during biological invasion. Ecol Lett 10:701–709. doi: 10.1111/j.1461-0248.2007.01060.x PubMedCrossRefGoogle Scholar
  9. Brotons L, Thuiller W, Araújo MB et al (2004) Presence-absence versus presence-only modelling methods for predicting bird habitat suitability. Ecography 27:437–448. doi: 10.1111/j.0906-7590.2004.03764.x CrossRefGoogle Scholar
  10. Carpintero S, Reyes-López J (2008) The role of competitive dominance in the invasive ability of the Argentine ant (Linepithema humile). Biol Invasions 10:25–35CrossRefGoogle Scholar
  11. Carpintero S, Reyes-López J, Arias de Reyna L (2004) Impact of human dwellings on the distribution of the exotic Argentine ant: a case study in the Doñana National Park, Spain. Biol Conserv 115:279–289. doi: 10.1016/S0006-3207(03)00147-2 CrossRefGoogle Scholar
  12. Carpintero S, Reyes-López J, Arias de Reyna L (2005) Impact of Argentine ants (Linepithema humile) on an arboreal ant community in Doñana National Park, Spain. Biodivers Conserv 14:151–163. doi: 10.1007/s10531-005-3947-6 CrossRefGoogle Scholar
  13. Casellas D (2004) Tasa de expansión de la hormiga argentina, Linepithema humile (Mayr 1868), (Hymenoptera, Dolichoderine) en un área mediterránea. Bol Asoc Esp Entomol 28:207–216Google Scholar
  14. Chapin FSI, Zavaleta ES, Eviner VT et al (2000) Consequences of changing biodiversity. Nature 405:234–242. doi: 10.1038/35012241 PubMedCrossRefGoogle Scholar
  15. Drake JM, Lodge DM (2006) Forecasting potential distributions of nonindigenous species with a genetic algorithm. Fisheries 31:9–16. doi: 10.1577/1548-8446(2006)31[9:FPDONS]2.0.CO;2 CrossRefGoogle Scholar
  16. Elith J, Graham CH, Anderson RP et al (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29:129–151. doi: 10.1111/j.2006.0906-7590.04596.x CrossRefGoogle Scholar
  17. Elith J, Leathwick JR, Hastie T (2008) A working guide to boosted regression trees. J Anim Ecol 77:802–813. doi: 10.1111/j.1365-2656.2008.01390.x PubMedCrossRefGoogle Scholar
  18. Espadaler X, Gómez C (2003) The Argentine ant, Linepithema humile, in the Iberian Peninsula. Sociobiology 42:187–192Google Scholar
  19. Farina A, Bogaert J, Schipani I (2005) Cognitive landscape and information: new perspectives to investigate the ecological complexity. Biosystems 79:235–240. doi: 10.1016/j.biosystems.2004.09.018 PubMedCrossRefGoogle Scholar
  20. Friedman JH (2001) Greedy function approximation: A gradient boosting machine. Ann Stat 29:1189–1232. doi: 10.1214/aos/1013203451 CrossRefGoogle Scholar
  21. Friedman JH, Meulman JJ (2003) Multiple additive regression trees with application in epidemiology. Stat Med 22:1365–1381PubMedCrossRefGoogle Scholar
  22. Giraud T, Pedersen JS, Keller L (2002) Evolution of supercolonies: the Argentine ants of southern Europe. Proc Natl Acad Sci USA 99:6075–6079. doi: 10.1073/pnas.092694199 PubMedCrossRefGoogle Scholar
  23. Grinnell J (1917) Field tests of theories concerning distributional control. Am Nat 51:115–128. doi: 10.1086/279591 CrossRefGoogle Scholar
  24. Guisan A, Thuiller W (2005) Predicting species distribution: offering more than simple habitat models. Ecol Lett 8:993–1009. doi: 10.1111/j.1461-0248.2005.00792.x CrossRefGoogle Scholar
  25. Guisan A, Edwards TC, Hastie T (2002) Generalized linear and generalized additive models in studies of species distributions: setting the scene. Ecol Model 157:89–100. doi: 10.1016/S0304-3800(02)00204-1 CrossRefGoogle Scholar
  26. Hanley JA, McNeil BJ (1982) The meaning and use of the area under a receiver operating characteristic (ROC) Curve. Radiology 143:29–36PubMedGoogle Scholar
  27. Hartley S, Lester PJ (2003) Temperature-dependent development of the Argentine ant, Linepithema humile (Mayr) (Hymenoptera: Formicidae): a degree-day model with implications for range limits in New Zealand. NZ Entomol 26:91–100Google Scholar
  28. Hartley S, Harris R, Lester PJ (2006) Quantifying uncertainty in the potential distribution of an invasive species: climate and the Argentine ant. Ecol Lett 9:1068–1079. doi: 10.1111/j.1461-0248.2006.00954.x PubMedCrossRefGoogle Scholar
  29. Hastie TJ, Tibshirani RJ (1990) Generalized additive models. Chapman & Hall, LondonGoogle Scholar
  30. Hee JJ, Holway DA, Suarez AV et al (2000) Role of propagule size in the success of incipient colonies of the invasive Argentine ant. Conserv Biol 14:559–563. doi: 10.1046/j.1523-1739.2000.99040.x CrossRefGoogle Scholar
  31. Heller NE, Sanders NJ, Gordon DM (2006) Linking temporal and spatial scales in the study of an Argentine ant invasion. Biol Invasions 8:501–507. doi: 10.1007/s10530-005-6411-3 CrossRefGoogle Scholar
  32. Heller NE, Sanders NJ, Shors JW et al (2008) Rainfall facilitates the spread, and time alters the impact, of the invasive Argentine ant. Oecologia 155:385–395. doi: 10.1007/s00442-007-0911-z PubMedCrossRefGoogle Scholar
  33. Holway DA (1995) Distribution of the Argentine ant (Linepithema humile) in Northern California. Conserv Biol 9:1634–1637. doi: 10.1046/j.1523-1739.1995.09061634.x CrossRefGoogle Scholar
  34. Holway DA (1998) Factors governing rate of invasion: a natural experiment using Argentine ants. Oecologia 115:206–212. doi: 10.1007/s004420050509 CrossRefGoogle Scholar
  35. Holway DA, Suarez AV, Case TJ (2002) Role of abiotic factors in governing susceptibility to invasion: a test with Argentine ants. Ecology 83:1610–1619CrossRefGoogle Scholar
  36. Huete A, Didan K, Miura R et al (2002) Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens Environ 83:195–213. doi: 10.1016/S0034-4257(02)00096-2 CrossRefGoogle Scholar
  37. Human KG, Weiss S, Weiss A et al (1998) Effects of abiotic factors on the distribution and activity of the invasive Argentine ant (Hymenoptera: Formicidae). Environ Entomol 27:822–833Google Scholar
  38. Hutchinson GE (1957) A treatise on limnology. Wiley, New YorkGoogle Scholar
  39. Justice C, Vermote E, Townshend JRG et al (1998) The moderate resolution imaging spectroradiometer (MODIS): land remote sensing for global change research. IEEE Trans Geosci Rem Sens 36:1228–1249. doi: 10.1109/36.701075 CrossRefGoogle Scholar
  40. Krushelnycky PD, Joe SM, Medeiros AC et al (2005) The role of abiotic conditions in shaping the long-term patterns of a high-elevation Argentine ant invasion. Divers Distrib 11:319–331. doi: 10.1111/j.1366-9516.2005.00151.x CrossRefGoogle Scholar
  41. Leathwick JR, Elith J, Francis MP et al (2006) Variation in demersal fish species richness in the oceans surrounding New Zealand: an analysis using boosted regression trees. Mar Ecol Prog Ser 321:267–281. doi: 10.3354/meps321267 CrossRefGoogle Scholar
  42. Mack MC, Simberloff D, Lonsdale WM et al (2000) Biotic invasions: causes, epidemiology, global consequences, and control. Ecol Appl 10:689–710. doi: 10.1890/1051-0761(2000)010[0689:BICEGC]2.0.CO;2 CrossRefGoogle Scholar
  43. Mackey BG, Lindenmayer DB (2001) Towards a hierarchical framework for modelling the spatial distribution of animals. J Biogeogr 28:1147–1166. doi: 10.1046/j.1365-2699.2001.00626.x CrossRefGoogle Scholar
  44. Manel S, Williams HC, Ormerod SJ (2001) Evaluating presence-absence models in ecology: the need to account for prevalence. J Appl Ecol 38:921–931. doi: 10.1046/j.1365-2664.2001.00647.x CrossRefGoogle Scholar
  45. Menke SB, Holway DA (2006) Abiotic factors control invasion by Argentine ants at the community scale. J Anim Ecol 75:368–376. doi: 10.1111/j.1365-2656.2006.01056.x PubMedCrossRefGoogle Scholar
  46. Menke SB, Fisher RN, Jetz W et al (2007) Biotic and abiotic controls of Argentine ant invasion success at local and landscape scales. Ecology 88:3164–3173. doi: 10.1890/07-0122.1 PubMedCrossRefGoogle Scholar
  47. Ninyerola M, Pons X, Roure JM (2005) Atlas climático digital de la Península Ibérica: metodología y aplicaciones en bioclimatología y geobotánica. Universidad Autónoma de BarcelonaGoogle Scholar
  48. Passera L (1994) Characteristics of tramp species. In: Williams DF (ed) Exotic ants. Biology, impact, and control of introduced species. Westview Press, BoulderGoogle Scholar
  49. Pearce JL, Boyce MS (2006) Modelling distribution and abundance with presence-only data. J Appl Ecol 43:405–412. doi: 10.1111/j.1365-2664.2005.01112.x CrossRefGoogle Scholar
  50. Pearce J, Ferrier S (2000) Evaluating the predictive performance of habitat models developed using logistic regression. Ecol Model 133:225–245. doi: 10.1016/S0304-3800(00)00322-7 CrossRefGoogle Scholar
  51. Pearson RG, Thuiller W, Araújo MB et al (2006) Model-based uncertainty in species range prediction. J Biogeogr 33:1704–1711. doi: 10.1111/j.1365-2699.2006.01460.x CrossRefGoogle Scholar
  52. Peterson AT (2003) Predicting the geography of species’ invasions via ecological niche modeling. Q Rev Biol 78:21–35. doi: 10.1086/378926 CrossRefGoogle Scholar
  53. Peterson AT, Cohoon KP (1999) Sensitivity of distributional prediction algorithms to geographic data completeness. Ecol Model 117:159–164. doi: 10.1016/S0304-3800(99)00023-X CrossRefGoogle Scholar
  54. Peterson AT, Soberón J, Sánchez-Cordero V (1999) Conservatism of ecological niches in evolutionary time. Science 285:1265–1267. doi: 10.1126/science.285.5431.1265 PubMedCrossRefGoogle Scholar
  55. Peterson AT, Papeş M, Soberón J (2008) Rethinking receiver operating characteristic analysis applications in ecological niche modelling. Ecol Model 213:63–72CrossRefGoogle Scholar
  56. Phillips SJ, Dudík M, Schapire RE (2004) A maximum entropy approach to species distribution modeling. In: Proceedings of the 21st international conference on machine learning, Banff, Canada, pp 655–662Google Scholar
  57. Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259. doi: 10.1016/j.ecolmodel.2005.03.026 CrossRefGoogle Scholar
  58. Ridgeway G (1999) The state of boosting. Comput Sci Stat 31:172–181Google Scholar
  59. Rouget M, Richardson DM, Lavorel S et al (2001) Determinants of distribution of six Pinus species in Catalonia, Spain. J Veg Sci 12:491–502. doi: 10.2307/3237001 CrossRefGoogle Scholar
  60. Roura-Pascual N, Suarez AV, Gómez C et al (2004) Geographical potential of Argentine ants (Linepithema humile Mayr) in the face of global climate change. Proc R Soc Lond B Biol Sci 271:2527–2535. doi: 10.1098/rspb.2004.2898 CrossRefGoogle Scholar
  61. Roura-Pascual N, Suarez AV, McNyset K et al (2006) Niche differentiation and fine-scale projections for Argentine ants based on remotely sensed data. Ecol Appl 16:1832–1841. doi: 10.1890/1051-0761(2006)016[1832:NDAFPF]2.0.CO;2 PubMedCrossRefGoogle Scholar
  62. Rushton SP, Ormerod SJ, Kerby G (2004) New paradigms for modelling species distributions? J Appl Ecol 41:193–200. doi: 10.1111/j.0021-8901.2004.00903.x CrossRefGoogle Scholar
  63. Soberón J, Peterson AT (2005) Interpretation of models of fundamental ecological niches and species’ distributional areas. Biodivers Inform 2:1–10Google Scholar
  64. Stockwell DRB, Noble IR (1992) Induction of sets of rules from animal distribution data: a robust and informative method of data analysis. Math Comput Simul 33:385–390. doi: 10.1016/0378-4754(92)90126-2 CrossRefGoogle Scholar
  65. Stockwell DRB, Peters D (1999) The GARP modelling system: problems and solutions to automated spatial prediction. Int J Geogr Inf Sci 13:143–158. doi: 10.1080/136588199241391 CrossRefGoogle Scholar
  66. Stockwell DRB, Peterson AT (2002) Controlling bias in biodiversity data. In: Scott JM, Heglund PJ, Morrison ML et al (eds) Predicting species occurrences: issues of accuracy and scale. Island Press, Washington, pp 537–546Google Scholar
  67. Suarez AV, Holway DA, Case TJ (2001) Patterns of spread in biological invasions dominated by long-distance jump dispersal: insights from Argentine ants. Proc Natl Acad Sci USA 98:1095–1100. doi: 10.1073/pnas.98.3.1095 PubMedCrossRefGoogle Scholar
  68. Thuiller W (2003) BIOMOD – optimizing predictions of species distributions and projecting potential future shifts under global change. Glob Change Biol 9:1353–1362. doi: 10.1046/j.1365-2486.2003.00666.x CrossRefGoogle Scholar
  69. Thuiller W (2004) Patterns and uncertainties of species’ range shifts under climate change. Glob Change Biol 10:2020–2027. doi: 10.1111/j.1365-2486.2004.00859.x CrossRefGoogle Scholar
  70. Thuiller W, Vayreda J, Pino J et al (2003) Large-scale environmental correlates of forest tree distributions in Catalonia (NE Spain). Glob Ecol Biogeogr 12:313–325. doi: 10.1046/j.1466-822X.2003.00033.x CrossRefGoogle Scholar
  71. Thuiller W, Brotons L, Araújo MB et al (2004) Effects of restricting environmental range of data to project current and future species distributions. Ecography 27:165–172. doi: 10.1111/j.0906-7590.2004.03673.x CrossRefGoogle Scholar
  72. Thuiller W, Midgley GF, Rouget M et al (2006) Predicting patterns of plant species richness in megadiverse South Africa. Ecography 29:733–744. doi: 10.1111/j.0906-7590.2006.04674.x CrossRefGoogle Scholar
  73. Tsutsui ND, Suarez AV, Holway DA et al (2001) Relationships among native and introduced populations of the Argentine ant (Linepithema humile) and the source of introduced populations. Mol Ecol 10:2151–2161. doi: 10.1046/j.0962-1083.2001.01363.x PubMedCrossRefGoogle Scholar
  74. Van Horne B (2002) Approaches to habitat modeling: the tensions between pattern and process and between specificity and generality. In: Scott JM, Heglund, PJ, Morrison ML et al (eds) Predicting species occurrences: issues of accuracy and scale. Island Press, Washington, pp 63–72Google Scholar
  75. Vega SJ, Rust MK (2001) The Argentine ant – a significant invasive species in agricultural, urban and natural environments. Sociobiology 37:3–25Google Scholar
  76. Vitousek PM, D’Antonio CM, Loope LL et al (1997) Introduced species: a significant component of human-caused global change. N Z J Ecol 21:1–16Google Scholar
  77. Ward DF (2007) Modelling the potential geographic distribution of invasive ant species in New Zealand. Biol Invasions 9:723–735. doi: 10.1007/s10530-006-9072-y CrossRefGoogle Scholar
  78. Ward DF, Harris RJ, Stanley MC (2005) Human-mediated range expansion of Argentine ants Linepithema humile (Hymenoptera: Formicidae) in New Zealand. Sociobiology 45:401–407Google Scholar
  79. Way MJ, Cammell ME, Paiva MR et al (1997) Distribution and dynamics of the Argentine ant Linepithema (Iridomyrmex) humile (Mayr) in relation to vegetation, soil conditions, topography and native competitor ants in Portugal. Insect Soc 44:415–433CrossRefGoogle Scholar
  80. Welk E (2004) Constraints in range predictions of invasive plant species due to non-equilibrium distribution patterns: purple loosestrife (Lythrum salicaria) in North America. Ecol Model 179:551–567. doi: 10.1016/j.ecolmodel.2004.04.020 CrossRefGoogle Scholar
  81. Wiens JA (1989) Spatial scaling in ecology. Funct Ecol 3:385–397. doi: 10.2307/2389612 CrossRefGoogle Scholar
  82. Wild AL (2004) Taxonomy and distribution of the Argentine ant, Linepithema humile (Hymenoptera: Formicidae). Ann Entomol Soc Am 97:1204–1215. doi: 10.1603/0013-8746(2004)097[1204:TADOTA]2.0.CO;2 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Núria Roura-Pascual
    • 1
    • 2
  • Lluís Brotons
    • 3
  • A. Townsend Peterson
    • 4
  • Wilfried Thuiller
    • 5
  1. 1.Departament de Ciències AmbientalsUniversitat de GironaGironaSpain
  2. 2.Centre for Invasion Biology, Department of Botany and ZoologyStellenbosch UniversityMatielandSouth Africa
  3. 3.Àrea de BiodiversitatCentre Tecnològic Forestal de CatalunyaSolsonaSpain
  4. 4.Natural History Museum and Biodiversity Research CenterThe University of KansasLawrenceUSA
  5. 5.Laboratoire d’Ecologie Alpine, UMR-CNRS 5553Université J. FourierGrenoble Cedex 9France

Personalised recommendations