Biological Invasions

, Volume 10, Issue 8, pp 1457–1479 | Cite as

Putative native source of the invasive fire ant Solenopsis invicta in the USA

  • Eric J. Caldera
  • Kenneth G. Ross
  • Christopher J. DeHeer
  • D. DeWayne Shoemaker
Original Paper

Abstract

The ecological and evolutionary dynamics of newly introduced invasive species can best be understood by identifying the source population(s) from which they originated, as many species vary behaviorally, morphologically, and genetically across their native landscapes. We attempt to identify the source(s) of the red imported fire ant (Solenopsis invicta) in the southern USA utilizing data from three classes of genetic markers (allozymes, microsatellites, and mitochondrial DNA sequences) and employing Bayesian clustering simulations, assignment and exclusion tests, and phylogenetic and population genetic analyses. We conclude that the Mesopotamia flood plain near Formosa, Argentina represents the most probable source region for introduced S. invicta among the 10 localities sampled across the native South American range. This result confirms previous suspicions that the source population resides in northern Argentina, while adding further doubts to earlier claims that the Pantanal region of Brazil is the source area. Several lines of evidence suggest that S. invicta in the southern USA is derived from a single location rather than being the product of multiple invasions from widely separated source localities. Although finer-scale sampling of northern Argentina and Paraguay combined with the use of additional genetic markers will be necessary to provide a highly precise source population assignment, our current results are of immediate use in directing future sampling and focusing ongoing biological control efforts.

Keywords

Allozymes Fire ant Genetic structure Invasive species Microsatellites mtDNA Native source population Solenopsis invicta 

References

  1. Ahrens ME, Ross KG, Shoemaker DD (2005) Phylogeographic structure of the fire ant Solenopsis invicta in its native South American range: roles of natural barriers and habitat connectivity. Evolution 59:1733–1743PubMedGoogle Scholar
  2. Allen GE, Buren WF (1974) Microsporidan and fungal diseases of Solenopsis invicta Buren in Brazil. J NY Entomol Soc 82:125–130Google Scholar
  3. Allen CR, Lutz RS, Demarais S (1998) Ecological effects of the invasive nonindigenous ant, Solenopsis invicta, on native vertebrates: the wheels on the bus. Trans N Am Wildl Nat Res Conf 63:56–65Google Scholar
  4. Baudouin L, Piry S, Cornuet JM (2004) Analytical Bayesian approach for assigning individuals to populations. Heredity 95:217–224CrossRefGoogle Scholar
  5. Buckley A (1999) Fire ants in California. Am Bee J 139:88Google Scholar
  6. Buren WF (1972) Revisionary studies on the taxonomy of the imported fire ants. Georgia Entomol Soc 7:1–26Google Scholar
  7. Buren WF, Allen GE, Whitcomb WH, Lennartz FE, Williams RN (1974) Zoogeography of the imported fire ants. J NY Entomol Soc 82:113–124Google Scholar
  8. Callcott AMA, Collins HL (1996) Invasion and range expansion of imported fire ants (Hymenoptera: Formicidae) in North America from 1918–1995. Fla Entomol 79:240–251CrossRefGoogle Scholar
  9. Carroll CR, Hoffman CA (2000) The pervasive ecological effects of invasive species: Exotic and native fire ants. In: Coleman DC, Hendrix PF (eds) Invertebrates as Web-masters in ecosystems. Wallingford, Oxon, pp 221–232Google Scholar
  10. Carruthers RI (2003) Invasive species research in the United States Department of Agriculture – Agricultural Research Service. Pest Manage Sci 59:827–834CrossRefGoogle Scholar
  11. Chakraborty R, Nei M (1977) Bottleneck effects on average heterozygosity and genetic distance with the stepwise mutation model. Evolution 31:347–356CrossRefGoogle Scholar
  12. Chen JSC, Shen CH, Lee HJ (2006) Monogynous and polygynous red imported fire ants, Solenopsis invicta Buren (Hymenoptera: Formicidae), in Taiwan. Environm Entomol 35:167–172CrossRefGoogle Scholar
  13. Cornuet JM, Piry S, Luikart G, Estoup A, Solignac M (1999) New methods employing multilocus genotypes to select or exclude populations as origins of individuals. Genetics 153:1989–2000PubMedGoogle Scholar
  14. Davis LR, Vander Meer RK, Porter SD (2001) Red imported fire ants expand their range across the West Indies. Fld Entomol 84:735–736CrossRefGoogle Scholar
  15. Downie DA (2002) Locating the sources of an invasive pest, grape phylloxera, using a mitochondrial DNA gene genealogy. Mol Ecol 11:2013–2026PubMedCrossRefGoogle Scholar
  16. Dybdahl MF, Storfer A (2003) Parasite local adaptation: red queen versus suicide king. Trends Ecol Evol 18:523–530CrossRefGoogle Scholar
  17. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620PubMedCrossRefGoogle Scholar
  18. Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587PubMedGoogle Scholar
  19. Felsenstein J (2004) PHYLIP (Phylogeny Inference Package) version 3.6. Department of Genome Sciences, University of Washington, SeattleGoogle Scholar
  20. Foitzik S, Fischer B, Heinze J (2003) Arms races between social parasites and their hosts: geographic patterns of manipulation and resistance. Behav Ecol 14:80–88CrossRefGoogle Scholar
  21. Folgarait PJ, Bruzzone O, Porter SD, Pesquero MA, Gilbert LE (2005) Biogeography and macroecology of phorid flies that attack fire ants in south-eastern Brazil and Argentina. J Biogeogr 32:353–367CrossRefGoogle Scholar
  22. Giraud T, Pedersen JS, Keller L (2002) Evolution of supercolonies: the Argentine ants of southern Europe. Proc Natl Acad Sci USA 99:6075–6079Google Scholar
  23. Glaubitz JC (2004) CONVERT: a user-friendly program to reformat diploid genotypic data for commonly used population genetic software packages. Mol Ecol Notes 4:309–310CrossRefGoogle Scholar
  24. Goolsby JA, DeBarro PJ, Makinson JR, Pemberton RW, Hartley DM, Frohlich DR (2006) Matching the origin of an invasive weed for selection of a herbivore haplotype for a biological control programme. Mol Ecol 15:287–297PubMedCrossRefGoogle Scholar
  25. Gotelli NJ, Arnett AE (2000) Biogeographic effects of red fire ant invasion. Ecol Lett 3:257–261CrossRefGoogle Scholar
  26. Gotzek D, Ross KG (2007) Genetic regulation of colony social organization in fire ants: an integrative overview. Q Rev Biol 82:201–226PubMedCrossRefGoogle Scholar
  27. Gotzek D, Shoemaker D, Ross KG (2007) Molecular variation at a candidate gene implicated in the regulation of fire ant social behavior. PLoS ONE 2:e1088. doi:10.1371/journal.pone.0001088
  28. Gwiazdowski RA, Van Driesche RG, Desnoyers A, Lyon S, Wu Sa, Kamata N, Normark BB (2006) Possible geographic origin of beech scale, Cryptococcus fagisuga (Hemiptera: Eriococcidae), an invasive pest in North America. Biol Control 39:9–18CrossRefGoogle Scholar
  29. Harter AV, Gardner KA, Falush D, Lentz DL, Bye RA, Rieseberg LH (2004) Origin of extant domesticated sunflowers in eastern North America. Nature 430:201–205PubMedCrossRefGoogle Scholar
  30. Havill NP, Montgomery ME, Yu G, Shiyake S, Caccone A (2006) Mitochondrial DNA from hemlock woolly adelgid (Hemiptera: Adelgidae) suggests cryptic speciation and pinpoints the source of the introduction to eastern North America. Ann Entomol Soc Am 99:195–203CrossRefGoogle Scholar
  31. Huang TC, Chou YC, Chou HC (2004) The infestation and control of the red imported fire ant in Taiwan. In: Proceedings of the symposium on the control of the red imported fire ant, Bureau of animal and plant health inspection and quarantine, Council of Agriculture, Executive Yuan, Taipei, TaiwanGoogle Scholar
  32. Jarne P, Lagoda PJL (1996) Microsatellites: from molecules to populations and back. Trends Ecol Evol 11:424–429CrossRefGoogle Scholar
  33. Jouvenaz DP (1990) Approaches to biological control of fire ants in the United States. In: Vander Meer RK, Jaffe K, Cedeno A (eds) Applied myrmecology: a world perspective. Westview Press, Boulder, pp 620–627Google Scholar
  34. Kaltz O, Shykoff JA (1998) Local adaptation in host-parasite systems. Heredity 81:361–370CrossRefGoogle Scholar
  35. Kemp SF, deShazo RD, Moffitt JE, Williams DF, Buhner WA (2000) Expanding habitat of the imported fire ant (Solenopsis invicta): a public health concern. J Allergy Clin Immunol 105:683–691PubMedCrossRefGoogle Scholar
  36. Kraaijeveld AR, Godfray HCJ (1999) Geographic patterns in the evolution of resistance and virulence in Drosophila and its parasitoids. Am Nat 153:S61–S74CrossRefGoogle Scholar
  37. Krieger MJB, Ross KG (2002) Identification of a major gene regulating complex social behavior. Science 295:328–332PubMedCrossRefGoogle Scholar
  38. Laine AL (2005) Spatial scale of local adaptation in a plant-pathogen metapopulation. J Evol Biol 18:930–938PubMedCrossRefGoogle Scholar
  39. Lee CE (2002) Evolutionary genetics of invasive species. Trends Ecol Evol 17:386–391CrossRefGoogle Scholar
  40. Lively CM, Dybdahl MF (2000) Parasite adaptation to locally common host genotypes. Nature 405:679–681PubMedCrossRefGoogle Scholar
  41. Lively CM, Dybdahl MF, Jokela J, Osnas EE, Delph LF (2004) Host sex and local adaptation by parasites in a snail-trematode interaction. Am Nat 164:S6–S18Google Scholar
  42. Lofgren CS (1986a) History of imported fire ants in the United States. In: Lofgren CS, Vander Meer RK (eds) Fire ants and leaf cutting ants: biology and management. Westview Press, Boulder, pp 36–49Google Scholar
  43. Lofgren CS (1986b) The economic importance and control of imported fire ants in the United States Economic impact and control of social insects. Praeger, New York, pp 227–256Google Scholar
  44. Lofgren CS, Banks WA, Glancey BM (1975) Biology and control of imported fire ants. Ann Rev Entomol 20:1–30CrossRefGoogle Scholar
  45. MacKay WP, Fagerlund R (1997) Range expansion of the red imported fire ant, Solenopsis invicta Buren (Hymenoptera: Formicidae), into New Mexico and extreme western Texas. Proc Entomol Soc Wash 99:757–758Google Scholar
  46. May GE, Gelembiuk GW, Panov VE, Orlova MI, Lee CE (2006) Molecular ecology of zebra mussel invasions. Mol Ecol 15:1021–1031PubMedCrossRefGoogle Scholar
  47. McCubbin KI, Weiner JM (2002) Fire ants in Australia: a new medical and ecological hazard. Med J Aust 176:518–519PubMedGoogle Scholar
  48. Mehdiabadi NJ, Gilbert LE (2002) Colony-level impacts of parasitoid flies on fire ants. Proc R Soc Biol Sci (Series B) 269:1695–1699CrossRefGoogle Scholar
  49. Mehdiabadi NJ, Kawazoe EA, Gilbert LE (2004) Phorid fly parasitoids of invasive fire ants indirectly improve the competitive ability of a native ant. Ecol Entomol 29:621–627CrossRefGoogle Scholar
  50. Mescher MC, Ross KG, Shoemaker DD, Keller L, Krieger MJB (2003) Distribution of the two social forms of the fire ant Solenopsis invicta (Hymenoptera: Formicidae) in the native South American range. Ann Entomol Soc Am 96:810–817CrossRefGoogle Scholar
  51. Mitchell CE, Power AG (2003) Release of invasive plants from fungal and viral pathogens. Nature 421:625–627PubMedCrossRefGoogle Scholar
  52. Miura O, Torchin ME, Kuris AM, Hechinger RF, Chiba S (2006) Introduced cryptic species of parasites exhibit different invasion pathways. Proc Am Acad Arts Sci USA 103:19818–19823CrossRefGoogle Scholar
  53. Morrison LW (2000) Mechanisms of interspecific competition among an invasive and two native fire ants. Oikos 90:238–252CrossRefGoogle Scholar
  54. Morrison LW (2002) Long-term impacts of an arthropod-community invasion by the imported fire ant, Solenopsis invicta. Ecology 83:2337–2345Google Scholar
  55. Morrison LW, Porter SD (2005) Phenology and parasitism rates in introduced populations of Pseudacteon tricuspis, a parasitoid of Solenopsis invicta. Biocontrol 50:127–141CrossRefGoogle Scholar
  56. Morrison LW, Kawazoe EA, Guerra R, Gilbert LE (2000) Ecological interactions of Pseudacteon parasitoids and Solenopsis ant hosts: environmental correlates of activity and effects on competitive hierarchies. Ecol Entomol 25:433–444CrossRefGoogle Scholar
  57. Nei M, Tajima F, Tateno Y (1983) Accuracy of estimated phylogenetic trees from molecular data. II. Gene frequency data. J Mol Evol 19:153–170PubMedCrossRefGoogle Scholar
  58. Orr MR (1996) Host manipulation by Wolbachia is a neutral trait within single populations. Anim Behav 51:1183–1185CrossRefGoogle Scholar
  59. Paetkau D, Slade R, Burdents M, Estoup A (2004) Genetic assignment methods for the direct, real-time estimation of migration rate: a simulation-based exploration of accuracy and power. Mol Ecol 13:55–65PubMedCrossRefGoogle Scholar
  60. Patterson RS (1994) Biological control of introduced ant species. In: Williams DF (ed) Exotic ants: biology, impact, and control of introduced species. Westview Press, Boulder, pp 293–308Google Scholar
  61. Pereira RM, Porter SD (2006) Range expansion of the fire ant decapitating fly, Pseudacteon tricuspis, eight to nine years after releases in North Florida. Fla Entomol 89:536–538CrossRefGoogle Scholar
  62. Piry S, Alapetite A, Cornuet J-M, Paetkau D, Budouin L, Estoup A (2004) GENECLASS2: a software for genetic assignment and first-generation migrant detection. J Hered 95:536–539PubMedCrossRefGoogle Scholar
  63. Pitts JP (2002) A cladistic analysis of the Solenopsis saevissima species-group (Hymenoptera: Formicidae). Ph.D., Entomology, University of Georgia, Athens, GAGoogle Scholar
  64. Pitts JP, McHugh JV, Ross KG (2005) Cladistic analysis of the fire ants of the Solenopsis saevissima species-group (Hymenoptera: Formicidae). Zool Scr 34:493–505CrossRefGoogle Scholar
  65. Porter SD (1998) Host-specific attraction of Pseudacteon flies (Diptera: Phoridae) to fire ant colonies in Brazil. Fla Entomol 81:423–429CrossRefGoogle Scholar
  66. Porter SD (2000) Host specificity and risk assessment of releasing the decapitating fly Pseudacteon curvatus as a classical biocontrol agent for imported fire ants. Biol Control 19:35–47CrossRefGoogle Scholar
  67. Porter SD, Alonso LE (1999) Host specificity of fire ant decapitating flies (Diptera: Phoridae) in laboratory oviposition tests. J Econ Entomol 92:110–114Google Scholar
  68. Porter SD, Briano JA (2000) Parasitoid-host matching between the little decapitating fly Pseudacteon curvatus from Las Flores, Argentina and the black fire ant Solenopsis richteri. Fla Entomol 83:422–427CrossRefGoogle Scholar
  69. Porter SD, Savignano DA (1990) Invasion of polygyne fire ants decimates native ants and disrupts arthropod community. Ecology 7:2095–2106CrossRefGoogle Scholar
  70. Porter SD, Fowler HG, MacKay WP (1992) Fire ant mound densities in the United States and Brazil (Hymenoptera: Formicidae). J Econ Entomol 85:1154–1161Google Scholar
  71. Porter SD, Pesquero MA, Campiolo S, Fowler HG (1995) Growth and development of Pseudacteon phorid fly maggots (Diptera: Phoridae) in the heads of Solenopsis fire ant workers (Hymenoptera: Formicidae). Environm Entomol 24:475–479Google Scholar
  72. Porter SD, Williams DF, Patterson RS (1997a) Rearing the decapitating fly Pseudacteon tricuspis (Diptera: Phoridae) in imported fire ants (Hymenoptera: Formicidae) from the United States. J Econ Entomol 90:135–138Google Scholar
  73. Porter SD, Williams DF, Patterson RS, Fowler HG (1997b) Intercontinental differences in the abundance of Solenopsis fire ants (Hymenoptera: Formicidae): escape from natural enemies? Environ Entomol 26:373–384Google Scholar
  74. Porter SD, de Sa LAN, Morrison LW (2004) Establishment and dispersal of the fire ant decapitating fly Pseudacteon tricuspis in North Florida. Biol Control 29:179–188CrossRefGoogle Scholar
  75. Posada D, Crandall KA (1998) MODELTEST: testing the model of DNA substitution. Bioinformatics 19:817–818CrossRefGoogle Scholar
  76. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedGoogle Scholar
  77. Provan J, Murphy S, Maggs CA (2005) Tracking the invasive history of the green alga Codium fragile ssp. tomentosoides. Mol Ecol 14:189–194PubMedCrossRefGoogle Scholar
  78. Rannala B, Mountain JL (1997) Detecting immigration by using multilocus genotypes. Proc Natl Acad Sci USA 94:9197–9201PubMedCrossRefGoogle Scholar
  79. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574PubMedCrossRefGoogle Scholar
  80. Rosenberg NA (2004) DISTRUCT: a program for the graphical display of population structure. Mol Ecol Notes 4:137–138CrossRefGoogle Scholar
  81. Ross KG, Shoemaker DD (1997) Nuclear and mitochondrial genetic structure in two social forms of the fire ant Solenopsis invicta: insights into transitions to an alternate social organization. Heredity 78:590–602CrossRefGoogle Scholar
  82. Ross KG, Shoemaker DD (2005) Species delimitation in native South American fire ants. Mol Ecol 14:3419–3438PubMedCrossRefGoogle Scholar
  83. Ross KG, Trager JC (1990) Systematics and population genetics of fire ants (Solenopsis saevissima complex) from Argentina. Evolution 44:2113–2134CrossRefGoogle Scholar
  84. Ross KG, Vargo EL, Keller L, Trager JC (1993) Effect of a founder event on variation in the genetic sex-determining system of the fire ant Solenopsis invicta. Genetics 135:843–854PubMedGoogle Scholar
  85. Ross KG, Vargo EL, Keller L (1996) Social evolution in a new environment: the case of introduced fire ants. Proc Natl Acad Sci USA 93:3021–3025PubMedCrossRefGoogle Scholar
  86. Ross KG, Keller L (1995) Ecology and evolution of social organization: insights from fire ants and other highly eusocial insects. Annu Rev Ecol Syst 26:631–656CrossRefGoogle Scholar
  87. Ross KG, Krieger MJB, Shoemaker DD, Vargo EL, Keller L (1997) Hierarchical analysis of genetic structure in native fire ant populations: results from three classes of molecular markers. Genetics 147:643–655PubMedGoogle Scholar
  88. Ross KG, Krieger MJB, Keller L, Shoemaker DD (2007) Genetic variation and structure in native populations of the fire ant Solenopsis invicta: evolutionary and demographic implications. Biol J Linn Soc 92:541–560CrossRefGoogle Scholar
  89. Sakai AK, Allendorf FW, Holt JS, Lodge DM, Molofsky J, With KA, Baughman S, Cabin RJ, Cohen JE, Ellstrand NC, McCauley DE, O’Neil P, Parker IM, Thompson JN, Weller SG (2001) The population biology of invasive species. Annu Rev Ecol Syst 32:305–332CrossRefGoogle Scholar
  90. Sax DF, Stachowicz JJ, Gaines SD (2005) Species invasions: Insights into ecology, evolution, and biogeography. Sinauer Associates, Sunderland, 495 ppGoogle Scholar
  91. Schneider S, Roessli D, Excoffier L (2000) Arlequin ver. 2.000: a software for population genetic data analysis. Genetics Biometry Laboratory, University of Geneva, SwitzerlandGoogle Scholar
  92. Shoemaker DD, Costa JT, Ross KG (1992) Estimates of heterozygosity in two social insects using a large number of electrophoretic markers. Heredity 69:573–582Google Scholar
  93. Shoemaker DD, Ross KG, Arnold ML (1996) Genetic structure and evolution of a fire ant hybrid zone. Evolution 50:1958–1976CrossRefGoogle Scholar
  94. Shoemaker DD, Ahrens M, Ross KG (2006a) Molecular phylogeny of fire ants of the Solenopsis saevissima species-group based on mitochondrial DNA sequences. Mol Phylogenet Evol 38:200–215PubMedCrossRefGoogle Scholar
  95. Shoemaker DD, DeHeer CJ, Krieger MJB, Ross KG (2006b) Population genetics of the invasive fire ant Solenopsis invicta (Hymenoptera: Formicidae) in the U.S.A. Ann Entomol Soc Am 99:1213–1233CrossRefGoogle Scholar
  96. Simon C, Frati F, Beckenbach A, Crespi B, Liu H, Flook P (1994) Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Ann Entomol Soc Am 81:651–701Google Scholar
  97. Swofford DL (1999) PAUP*. Phylogenetic analysis using parsimony (*and other methods), version 4.0. Sinauer Associates, Sunderland, MAGoogle Scholar
  98. Thrall PH, Burdon JJ, Bever JD (2002) Local adaptation in the Linum marginaleMelampsora lini host-pathogen interaction. Evolution 56:1340–1351PubMedGoogle Scholar
  99. Torchin ME, Lafferty KD, Dobson AP, McKenzie VJ, Kuris AM (2003) Introduced species and their missing parasites. Nature 421:628–630PubMedCrossRefGoogle Scholar
  100. Trager JC (1991) A revision of the fire ants, Solenopsis geminata group (Hymenoptera: Formicidae: Myrmicinae). J NY Entomol Soc 99:141–198Google Scholar
  101. Tschinkel WR (2006) The fire ants. Harvard University Press, Cambridge, 752 ppGoogle Scholar
  102. Tsutsui ND, Suarez AV, Grosberg RK (2003) Genetic diversity, asymmetrical aggression, and recognition in a widespread invasive species. Proc Natl Acad Sci USA 100:1078–1083PubMedCrossRefGoogle Scholar
  103. Vazquez RJ, Porter SD, Briano JA (2004) Host specificity of a biotype of the fire ant decapitating fly Pseudacteon curvatus (Diptera: Phoridae) from northern Argentina. Environ Entomol 33:1436–1441CrossRefGoogle Scholar
  104. Vinson SB (1994) Impact and invasion of Solenopsis invicta (Buren) on native food webs. In: Williams DF (ed) Exotic ants: biology, impact, and control of introduced species. Westview Press, Boulder, pp 293–308Google Scholar
  105. Waage JK, Mills NJ (1992) Biological control. In: Crawley MJ (ed) Natural enemies: the population biology of predators, parasites, and diseases. Blackwell Scientific Publications, Cambridge, pp 412–430Google Scholar
  106. Wilcove DS, Rothstein D, Dubow J, Phillips A, Losos E (1998) Quantifying threats to imperiled species in the United States. Bioscience 48:607–615CrossRefGoogle Scholar
  107. Williams DF (1994) Control of the introduced pest Solenopsis invicta in the United States. In: Williams DF (ed) Exotic ants. Biology, impact, and control of introduced species. Westview Press, Boulder, pp 282–292Google Scholar
  108. Williams DF, deShazo RD (2004) Biological control of fire ants: an update on new techniques. Ann Allergy Asthma Immunol 93:15–22PubMedCrossRefGoogle Scholar
  109. Williams DF, Porter SD (1994) Fire ant control. Science 264:1653–1653PubMedCrossRefGoogle Scholar
  110. Wojcik D, Allen CR, Brenner RJ, Forys EA, Jouvenaz D, Lutz RS (2001) Red imported fire ants: Impact on biodiversity. Am Entomol 47:16–23Google Scholar

Copyright information

© US Government 2008

Authors and Affiliations

  • Eric J. Caldera
    • 1
    • 2
  • Kenneth G. Ross
    • 3
  • Christopher J. DeHeer
    • 4
  • D. DeWayne Shoemaker
    • 5
  1. 1.Department of ZoologyUniversity of WisconsinMadisonUSA
  2. 2.Department of BacteriologyUniversity of WisconsinMadisonUSA
  3. 3.Department of EntomologyUniversity of GeorgiaAthensUSA
  4. 4.LI-COR BiotechnologyLincolnUSA
  5. 5.USDA-ARS Center for Medical, Agricultural, and Veterinary EntomologyGainesvilleUSA

Personalised recommendations