Biological Invasions

, Volume 10, Issue 5, pp 673–683 | Cite as

Assessing genetic variation and population structure of invasive North American beaver (Castor Canadensis Kuhl, 1820) in Tierra Del Fuego (Argentina)

  • Marta Susana Lizarralde
  • Graciela Bailliet
  • Sebastián Poljak
  • Mariana Fasanella
  • Cecilia Giulivi
Original Paper


The North American beaver (Castor Canadensis) was introduced into Isla Grande de Tierra del Fuego, Argentina in 1946 as a potential source of wild fur. The species showed high growth potential, reaching close to 100,000 individuals from an original founding stock of 25 females and 25 males. Beavers adapted rapidly to their new environment and became invasive, providing an excellent model of successful adaptation of introduced populations to a new habitat. In this study, we used polymorphic mitochondrial (mt) DNA to evaluate genetic variation in the introduced beaver population from Tierra del Fuego. Nucleotide variation in partial sequences of Cytochrome b (500 bp) and 12S rRNA (421 bp) genes and the main non-coding D-loop region (521 bp) were analyzed. Our study allowed to identify 10 different mtDNA lineages in the invasive population, none of them shared among the source populations. The pattern observed is a consequence of cessation of gene flow following expansion of the founding beaver population since the time of its introduction. This approach contributes to the understanding of effects of genetic changes on survival ability and reproductive success of invasive species. It also has important management implications to invasive species.


Castor Canadensis  Control region Cytochrome b D-loop Genetic variation Haplotype Invasive population Mitochondrial marker 12S rRNA Tierra del Fuego 



This study was supported by a grant from Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Argentina (PIP 4306/96) to ML and a Diversity Initiative Grant (2002–2003) from the University of Minnesota to CG. Special thanks to Mrs. Virginia Haynes (UMD) for technical assistance in the sequencing process. We thank Julio Escobar and Guillermo Deferrari (CADIC-CONICET) for participation and assistance in the collection of material used in this study; all the staff at Tierra del Fuego National Park (TFNP), and especially Dr. Thomas Hanley (US Forest Service, Juneau, Alaska, USA) for providing tissue samples of North American specimens and for his special collaboration. We also thank Dr. Claudio Bravi (IMBICE) for his advice and comments.


  1. Anderson CB, Rozzi R, Torres-Mura JC, McGehee SM, Sherriffs MF, Schuettler E, Rosemond AD (2006a) Exotic vertebrate fauna in the remote and pristine sub-Antarctic Cape Horn Archipelago region of Chile. Biodivers Conserv 10:3295–3313CrossRefGoogle Scholar
  2. Anderson C, Griffith C, Rosemond A, Rozzi R, Dollenz O (2006b) The effects of Invasive North American beavers on riparian plant communities in Cape Horn, Chile: do exotic beavers engineer differently in sub-Antartic ecosystems? Biol Conserv 128:467–474CrossRefGoogle Scholar
  3. Bandell HJ, Forster P, Rol A (1999) Median-Joining networks for inferring intraspecific phylogenetics. Mol Ecol Evol 16:37–48Google Scholar
  4. Bibb MJ, Van Etten RA, Wright CT, Walberg MW, Clayton DA (1981) Sequence and gene organization of mouse mitochondrial DNA. Cell 2:167–80CrossRefGoogle Scholar
  5. Brown G, Gadaleta G, Pepe C, Saccone C, Sbisá E (1986) Structural conservation and variation in the D-loop containing region of vertebrate mitochondrial DNA. J Mol Biol 192:503–511PubMedCrossRefGoogle Scholar
  6. Brown AHD, Marshall DR (1986) Evolutionary changes accompanying colonization in plants. In: Scudder GCE, Reveal JL (eds) Evolution today. Carnegie-Mellon University, Pittsburgh, PA, 351–363Google Scholar
  7. Carson HL 1987 Colonization and speciation In: Gray AJ, Crawley MJ, Edwards PJ (eds) Colonization, succession and stability Oxford, Blackwell Scientific PublicationsGoogle Scholar
  8. Coronato A, Escobar JM, Mallea C, Roig C, Lizarralde MS (2003) Geomophorlogy characteristics of mountain rivers colonized by Castor canadensis in Tierra del Fuego, Argentina. Ecología Austral 13:15–26Google Scholar
  9. Doyzery E, Randi E (1997) The mitochondrial control region of cervidae: evolutionary patterns and phylogenetic content. Mol Biol Evol 14(11):1154–1166Google Scholar
  10. Ducroz JF, Stubbe M, Saveljev AP, Heidecke D, Samjaa R, Ulevicius A, Stubbe A, Durka W (2005) Genetic variation and population structure of the Eurasian beaver Castor fiber in eastern Europe and Asia based on mtDNA sequences. J Mammal 86:1059–1067CrossRefGoogle Scholar
  11. Durka W, Babik W, Ducroz JF, Heidecke D, Rosell F, Samjaa R, Saveljev AP, Stubbe A, Ulevicius A, Stubbe M (2005) Mitochondrial phylogeography of the Eurasian beaver Castor fiber L. Mol Ecol 14:3843–3856PubMedCrossRefGoogle Scholar
  12. Ellegren H, Hartman G, Johansson M, Anderson L (1993) Major histocompatibility complex monomorphism and low levels of DNA fingerprinting variability in a reintroduced and rapidly expanding population of beavers. Proc Natl Acad Sci USA 90:8150–8153PubMedCrossRefGoogle Scholar
  13. Ellegren H, Johansson M, Hartman G, Anderson L (1994) DNA fingerprinting with the human 33.6 minisatellite probe identifies sex in beavers Castor fiber. Mol Ecol 3:273–274PubMedCrossRefGoogle Scholar
  14. Excoffier L, Laval G., Schneider S (2006) Arlequin ver. 3.01: an integrated software package for population genetics data analysis. Evol Bioinform Online 1:47–50Google Scholar
  15. Excoffier L (2004) Patterns of DNA sequence diversity and genetic structure after a range expansion: lessons from the infinite-island model. Mole Ecol 13(4):853–864CrossRefGoogle Scholar
  16. Felsenstein J (2004) PHYLIP – phylogeny inference package version 3.6. Department of Genetics, University of Washington, SeattleGoogle Scholar
  17. Fu Y-X (1997) Statistical tests of neutrality of mutations against population growth, hitchhiking and backgroud selection. Genetics 147:915–925PubMedGoogle Scholar
  18. Jaksic FM, Iriarte JA, Jiménez JE, Martinez DR (2002) Invaders without frontiers: cross-borders invasion of exotic mammals. Biol Invasions 4:157–173CrossRefGoogle Scholar
  19. Jenkins SH, Busher PE (1979) Castor canadensis. Mamm Species 120:1–8CrossRefGoogle Scholar
  20. Kotcher TD, Thomas WK, Meyer A, Edwards SV, Paabo S, Villablanca FX, Wilson AC (1989) Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers. Proc Natl Acad Sci USA 86:6196–6200CrossRefGoogle Scholar
  21. Kuehn R, Shwad G, Shroeder W, Rottmann O (2000) Differentiation of Castor fiber and Castor Canadensis by noninvasive molecular methods. Zoo Biol 19:511–515PubMedCrossRefGoogle Scholar
  22. Lizarralde MS (1993) Current status of the introduced beaver population in Tierra del Fuego (Argentina). AMBIO 22(6):351-358Google Scholar
  23. Lizarralde MS (2006) Control of invasive beaver in Archipelago of Tierra del Fuego. Paper presented at the International Workshop on the beaver problem in the Southern Cone, Wildlife Conservation Society, Punta Arenas, Chile, 6–8 December 2006Google Scholar
  24. Lizarralde MS, Escobar JM (2000) Exotic mammals in Tierra del Fuego, Argentina, Ciencia Hoy 10(56):52–63Google Scholar
  25. Lizarralde MS, Deferrari GA, Alvarez SE, Escobar JM (1996) Nutrient dynamic alterations induced by beaver (Castor canadensis) on the southern beech forest (Nothofagus). Austral Ecol 6:101–105Google Scholar
  26. Lizarralde MS, Escobar JM, Deferrari GA (2004) Invader species of Argentina: a review about beaver (Castor canadensis) population situation on Tierra del Fuego ecosystem. Interciencia 29(7):352–356Google Scholar
  27. Martinez Pastur G, Lencinas V, Escobar J, Quiroga P, Malmierca L, Lizarralde MS (2006) Understory succession in areas of Nothofagus forests in Tierra del Fuego (Argentina) affected by Castor canadensis. J Appl Vegetat Sci 9:143–154CrossRefGoogle Scholar
  28. Matson CW, Baker RJ (2001) DNA sequence variation in the mitochondrial control region of red-backed voles (Clethrionomys). Mol Biol Evol 18:1494–1501PubMedGoogle Scholar
  29. Matsuhashi TR, Masuda R, Mano T, Yoshida MC (1999) Microevolution of the mitochondrial DNA control region in the Japanese brown bear (Ursus arctos) populations. Mol Biol Evol 16:676–684PubMedGoogle Scholar
  30. Montgelard C, Bentz S, Tirard C, Verneau O, Catzeflis FM (2002) Molecular systematics of Sciurognathi (Rodentia): the mitochondrial cytochrome b and 12S rRNA genes support the Anomaluroidea (Pedetidae and Anomaluridae). Mol Phylogenet Evol 22:220–233PubMedCrossRefGoogle Scholar
  31. Milishnikov AN, Saveljev AP (2001) Genetic divergence and similarity of introduced populations of European beaver (Castor fiber L.1758) from Kirov and Novosibinsk oblasts of Russia. Russ J Genet 37:108–111CrossRefGoogle Scholar
  32. Moorman MC (2007) The conservation implications of invasive beaver and trout on native freshwater fish in the Cape Horn Biosphere Reserve, Chile. M.S. Thesis. Department of Earth, Atmosphere and Marine Sciences, North Carolina State University. Major Advisor: Dr. David EgglestonGoogle Scholar
  33. Moorman MC, Anderson CB, Gutiirrez AG, Charlin R, Rozzi R (2006) Watershed conservation and aquatic benthic macroinvertebrate diversity in the Alberto D’Agostini National Park, Tierra del Fuego, Chile. Anales del Instituto de la Patagonia 34:41–58Google Scholar
  34. Murphy WJ, Eizirik E, Johnson WE, Zhang YP, Ryder OA, O´Brien SG (2001) Molecular phylogenetics and the origins of placental mammals. Nature 409(6820):614–618PubMedCrossRefGoogle Scholar
  35. Nedbal MA, Honeycutt RL, Schlitter DA (1996) Higher level systematics of rodents (Mammalia, Rodentia): evidence from the mitochondrial 12SrRNA gene. J Mamm Evol 3(3):201–237CrossRefGoogle Scholar
  36. Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York, NY, USAGoogle Scholar
  37. Nei M (1975) Molecular population genetics and evolution. Elsevier Ed. New YorkGoogle Scholar
  38. Reyes A, Nevo E, Saccone C (2003) DNA sequence variation in the mitochondrial control region of subterranean mole rats, Spalax ehrenbergi superspecies, in Israel. Mol Biol Evol 20:622–632PubMedCrossRefGoogle Scholar
  39. Roughgarden J (1979) Theory of population genetics and evolutionary ecology. Macmillan, New YorkGoogle Scholar
  40. Saccone C, Attimonelli M, Sbisa E (1987) Structural elements highly preserved during the evolution of the D-loop containing region in vertebrate mitochondrial DNA. J Mol Evol 26:205–211PubMedCrossRefGoogle Scholar
  41. Sakai AK, Allendorf FW, Holt JS, Lodge DM, Molfsky J, With KA, Baughman S, Cabin RJ, Cohen JE, Ellstrand NC, McCauley DE, O'Neil P, Parker IM, Thompson JN, Weller SG (2001) The population biology of invasive species. Annu Rev Ecol Syst 32:305–332CrossRefGoogle Scholar
  42. Skewes O, Gonzalez F, Olave R, Avila A, Vargas V, Paulsen P, Kvnig HE (2006) Abundance and distribution of American beaver, Castor canadensis (Kuhl 1820), in Tierra del Fuego and Navarino islands, Chile. Eur J Wildl Res 52:292–296CrossRefGoogle Scholar
  43. Sambrock J, Fritsch EF, Maniatis T (1989) Molecular cloning, a laboratory manual. Cold Spring Harbor Laboratory Press, New CorkGoogle Scholar
  44. Sbizá E, Tanzariello F, Reyes A, Pesole G, Saccone C (1997) Mammalian mitochondrial D-loop region structural analysis: identification of new conserved sequences and their functional and evolutionary implications. Gene 205:125–140CrossRefGoogle Scholar
  45. Smith MF, Patton JL (1993) Variation in mitochondrial cytochrome b sequence in natural populations of South American akodontine rodents (Muridae Sigmodontinae). Mol Biol Evol 8(1):85–103Google Scholar
  46. Tajima F (1993) Measurement of DNA polymorphism In: Takahata N, Clark AG (eds) Mechanisms of molecular evolution. introduction to molecular paleopopulation biology, Japan Scientific Societies Press, Sinauer Associates Inc., Tokyo, Sunderland, MA, pp 37–59Google Scholar
  47. Thompson JD, Higgins DG, Gibson TJ (1994) Clustal W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680PubMedCrossRefGoogle Scholar
  48. Vila C, Amorin IR, Leonard JA (1999) Mitochondrial DNA phylogeography and population history of the grey Wolf Canis lupus. Mol Ecol 8:2089–2103PubMedCrossRefGoogle Scholar
  49. Wood NJ, Phua SH (1996) Variation in the control region sequence of the sheep mitochondrial genome. Anim Genet 27:25–33PubMedCrossRefGoogle Scholar
  50. Wright S (1955) Classification of the factors of evolution. Cold Spring Harb Symp Quant Biol 20:16–24PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Marta Susana Lizarralde
    • 1
    • 2
  • Graciela Bailliet
    • 3
  • Sebastián Poljak
    • 1
    • 2
  • Mariana Fasanella
    • 1
  • Cecilia Giulivi
    • 4
  1. 1.Centro Regional de Estudios Genómicos, Universidad Nacional de La PlataFlorencio VarelaArgentina
  2. 2.Centro Austral de Investigaciones Científicas, CADIC-CONICETUshuaiaArgentina
  3. 3.Instituto Multidisciplinario de Biología Celular, IMBICELa PlataArgentina
  4. 4.Department of Molecular Biosciences, School of Veterinary MedicineUniversity of CaliforniaDavisUSA

Personalised recommendations