Biological Invasions

, Volume 10, Issue 4, pp 411–433 | Cite as

A virus and its vector, pepper yellow leaf curl virus and Bemisia tabaci, two new invaders of Indonesia

  • Paul J. De Barro
  • Sri Hendrastuti Hidayat
  • Don Frohlich
  • Siti Subandiyah
  • Shigenori Ueda
Original Paper


Bemisia tabaci is a species of sap-sucking insect belonging to the Aleyrodidae and are commonly known as whiteflies. The species is made up of a complex of distinct genetic groups which have a strong geographic pattern to their genetic structure. Two members of this complex known as the B and Q biotypes have proven to be particularly invasive, spreading with the aid of trade in ornamental plants, well beyond their home ranges across the Mediterranean Basin, Middle East and Asia Minor. This study uses DNA microsatellites to identify another biological invasion this time involving a B. tabaci from south east Asia. We provide evidence which supports an invasion sometime between 1994 and 1999 of B. tabaci from central Thailand into the Indonesian islands of Sumatra then Java and Bali. The invasion is also associated with the invasion of pepper yellow leaf curl virus, a begomovirus transmitted by B. tabaci, which is also shown to have a probable origin in the same geographic region as the invading whitefly. The consequences of the invasion of a plant-infecting virus and its vector has been a massive increase in the scale and impact of begomoviruses in tomato and chilli production which has seen regional bans imposed on the planting of chilli, an important cash crop for many village farmers in Sumatra and Java.


Biological invasions Bemisia tabaci Microsatellite DNA Begomovirus Pepper yellow leaf curl virus Invasion genetics 


  1. Andrade EC, Manhani GG, Alfenas PF, Calegario RF, Fontes EPB, Zerbini FM (2006) Tomato yellow spot virus, a tomato-infecting begomovirus from Brazil with a closer relationship to viruses from Sida sp., forms pseudorecombinants with begomoviruses from tomato but not from Sida. J Gen Virol 87:3687–3696PubMedCrossRefGoogle Scholar
  2. Barton NH, Hewitt GM (1985) Analysis of hybrid zones. Annu Rev Ecol Syst 16:113–148CrossRefGoogle Scholar
  3. Bedford ID, Briddon RW, Markham PG, Brown JK, Rosell RC (1994) Geminivirus transmission and biological characterisation of Bemisia tabaci (Gennadius) biotypes from different geographic regions. Ann Appl Biol 125:311–325CrossRefGoogle Scholar
  4. Berry SD, FondongVN, Rey C, Rogan D, Fauquet CM, Brown JK (2004) Molecular evidence for five distinct Bemisia tabaci (Homoptera: Aleyrodidae) geographic haplotypes associated with cassava plants in Sub-Saharan Africa. Ann Entomol Soc Am 97:852–859CrossRefGoogle Scholar
  5. Bierne N, Daguin C, Bonhomme F, David P, Borsa P (2003) Direct selection on allozymes is not required to explain heterogeneity among marker loci across a Mytilus hybrid zone. Mol Ecol 12:2505–2510PubMedCrossRefGoogle Scholar
  6. Boykin LM, Shatters RG, Rosell RC, McKenzie CL, Bagnall RA, De Barro PJ and Frohlich DR (2007) Global relationships of Bemisia tabaci (Hemiptera: Aleyrodidae) revealed using Bayesian analysis of mitochondrial CO1 DNA sequence. Mol Phylogenet Evol (in press)Google Scholar
  7. Brown JK (2000) Molecular markers for the identification and global tracking of whitely vector-begomovirus complexes. Virus Res 71:233–260PubMedCrossRefGoogle Scholar
  8. Brown JK, Frohlich DR, Rosell RC (1995) The sweetpotato or silverleaf whiteflies: biotypes of Bemisia tabaci or a species complex? Ann Rev Entomol 40:511–534CrossRefGoogle Scholar
  9. Brown JK, Idris AM, Ostrow KM, Goldberg N, French R, Stenger DC (2005) Genetic and phenotypic variation of the Pepper golden mosaic virus complex. Phytopathology 95:1217–1224CrossRefPubMedGoogle Scholar
  10. Budowle B, Chakraborty R, Giusti AM, Eisenberg AJ, Allen RC (1991) Analysis of the VNTR locus D1S80 by the PCR followed by high-resolution PAGE. Am J Hum Genet 48:137–144PubMedGoogle Scholar
  11. Byrne FJ, Cahill M, Denholm I, Devonshire AL (1995) Biochemical identification of interbreeding between B-type and non B-type strains of the tobacco whitefly Bemisia tabaci. Biochem Genet 33:13–23PubMedCrossRefGoogle Scholar
  12. Caton BP, Dobbs TT, Brodel CF (2006) Arrivals of hitchhiking insect pests on international cargo aircraft at Miami International Airport. Biol Invasions 8:765–785CrossRefGoogle Scholar
  13. Cheek S, Macdonald O (1994) Extended Summaries SCI Pesticides Group Symposium Management of Bemisia tabaci. Pestic Sci 42:135–142CrossRefGoogle Scholar
  14. Colizza V, Barrat A, Barthelemy M, Vespignani A (2006) The role of the airline transportation network in the prediction and predictability of global epidemics. Proc Natl Acad Sci USA 103:2015–2020PubMedCrossRefGoogle Scholar
  15. Costa HS, Brown JK, Sivasupramaniam S, Bird J (1993) Regional distribution, insecticide resistance and reciprocal crosses between the ‘A’ and ‘B’ biotypes of Bemisia tabaci. Insect Sci Appl 14:127–138Google Scholar
  16. Dalton R (2006) The Christmas Invasion. Nature 443:898–900PubMedCrossRefGoogle Scholar
  17. De Barro PJ (2005) Genetic structure of the whitefly Bemisia tabaci in the Asia-Pacific region revealed using microsatellite markers. Mol Ecol 14:3695–3718PubMedCrossRefGoogle Scholar
  18. De Barro PJ, Hart PJ (2000) Mating interactions between two biotypes of the whitefly, Bemisia tabaci (Hemiptera:Aleyrodidae) in Australia. Bull Entomol Res 90:103–112PubMedCrossRefGoogle Scholar
  19. De Barro PJ, Driver F, Trueman JWH, Curran J (2000) Phylogenetic relationship of world populations of Bemisia tabaci (Gennadius) using ribosomal ITS1. Mol Phylogenet Evol 16:29–36PubMedCrossRefGoogle Scholar
  20. De Barro PJ, Scott KD, Graham GC, Lange CL, Schutze MK (2003) Isolation and characterisation of microsatellite loci in Bemisia tabaci. Mol Ecol Notes 3:40–43CrossRefGoogle Scholar
  21. De Barro PJ, Trueman JWH, Frohlich DR (2005) Bemisia argentifolii is a population of B. tabaci, the molecular genetic differentiation of B. tabaci populations around the world. Bull Entomol Res 95:193–203PubMedCrossRefGoogle Scholar
  22. De Barro PJ, Bourne A, Khan SA, Brancatini VAL (2006) Host plant and biotype density interactions—their role in the establishment of the invasive B biotype of Bemisia tabaci. Biol Invasions 8:287–294CrossRefGoogle Scholar
  23. Delatte H, Reynaud B, Granier M, Thornary L, Lett JM, Goldbach R, Peterschmitt M (2005) A new silverleaf-inducing biotype Ms of Bemisia tabaci (Hemiptera : Aleyrodidae) indigenous to the islands of the south-west Indian Ocean. Bull Entomol Res 95:29–35PubMedCrossRefGoogle Scholar
  24. Delatte H, Martin DP, Naze F, Goldbach R, Reynaud B, Peterschmitt M, Lett J-M (2006a) South West Indian Ocean islands tomato begomovirus populations represent a new major monopartite begomovirus group. J Gen Virol 86:1533–1542CrossRefGoogle Scholar
  25. Delatte H, David P, Granier M, Lett JM, Goldbach R, Peterschmitt M, Reynaud B (2006b) Microsatellites reveal extensive geographical, ecological and genetic contacts between invasive and indigenous whitefly biotypes in an insular environment. Genet Res 87:109–124PubMedCrossRefGoogle Scholar
  26. Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15Google Scholar
  27. Frohlich DR, Torres-Jerez I, Bedford ID, Markham PG, Brown JK (1999) A phylogeographical analysis of the Bemisia tabaci species complex based on mitochondrial DNA markers. Mol Ecol 8:1683–1691PubMedCrossRefGoogle Scholar
  28. Gunning RV, Byrne FJ, Conde BD, Connelly MI, Hergstrom K, Devonshire AL (1995) First report of B-biotype Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) in Australia. J Aust Entomol Soc 34:116CrossRefGoogle Scholar
  29. Guo SW, Thompson EA (1992) Performing the exact test of Hardy-Weinberg proportion for multiple alleles. Biometrics 48:361–372PubMedCrossRefGoogle Scholar
  30. Hidayat SH, Chatchawankanpanich O, Rusli E, Aidawati N (2006) Begomovirus Associated with Pepper Yellow Leaf Curl Disease in West Java Indonesia. Jurnal Mikrobiologi Indonesia 11:87–90Google Scholar
  31. Jenkins PT, Mooney HA (2006) The United States, China, and invasive species: Present status and future prospects. Biol Invasions 8:1589–1593CrossRefGoogle Scholar
  32. Jin L, Chakraborty R (1993) Estimation of genetic distance and coefficient of gene diversity from single-probe multilocus DNA fingerprinting data. Mol Biol Evol 11:120–127Google Scholar
  33. Jones DR (2003) Plant viruses transmitted by whiteflies. Eur J Plant Pathol 109:195–219CrossRefGoogle Scholar
  34. Lapidot M, Friedmann M (2002) Breeding for resistance to whitefly-transmitted geminiviruses. Ann Appl Biol 140:109–127CrossRefGoogle Scholar
  35. Levine JM, D’Antonio CM (2003) Forecasting biological invasions with increasing international trade. Conserv Biol 17:322–326CrossRefGoogle Scholar
  36. Lima LHC, Campos L, Moretzsohn MC, Návia D, de Oliveira MRV (2002) Genetic diversity of Bemisia tabaci (Genn.) populations in Brazil revealed by RAPD markers. Genet Mol Biol 25:217–223Google Scholar
  37. Liu HY, Cohen S, Duffus JE (1992) The use of isozyme patterns to distinguish sweetpotato whitefly (Bemisia tabaci) biotypes. Phytoparasitica 20:187–194Google Scholar
  38. Kats LB, Ferrer RP (2003) Alien predators and amphibian declines: review of two decades of science and the transition to conservation. Divers Distrib 9:99–110CrossRefGoogle Scholar
  39. Kriticos DJ, Phillips CB, Suckling DM (2005) Improving border biosecurity: potential economic benefits to New Zealand. NZ Plant Prot 58:1–6Google Scholar
  40. Mack MC, D’Antonio CM (1998) Impacts of biological invasions on disturbance regimes. Trends Ecol Evol 13:195–198CrossRefGoogle Scholar
  41. Mack RN, Lonsdale WM (2001) Humans as global plant dispersers: getting more than we bargained for. BioScience 51:95–102CrossRefGoogle Scholar
  42. Mack RN, Simberloff D, Lonsdale WM, Evans H, Clout M, Bazzaz FA (2000) Biotic invasions: causes, epidemiology, global consequences, and control. Ecol Appl 10:689–710CrossRefGoogle Scholar
  43. Mallet J (2005) Hybridization as an invasion of the genome. Trends Ecol Evol 20:229–237PubMedCrossRefGoogle Scholar
  44. Maruthi MN, Colvin J, Seal S (2001) Mating incompatibility, life-history traits, and RAPD–PCR variation in Bemisia tabaci associated with the cassava mosaic disease pandemic in east Africa. Entomol Exp Appl 99:13–23CrossRefGoogle Scholar
  45. Maruthi MN, Colvin J, Thwaites RM, Banks GK, Gibson G, Seal SE (2004) Reproductive incompatibility and cytochrome oxidase I gene sequence variability amongst host-adapted and geographically separate Bemisia tabaci populations (Hemiptera: Aleyrodidae). Syst Entomol 29:560–568CrossRefGoogle Scholar
  46. McCullough DG, Work TT, Cavey JF, Liebhold AM, Marshall D (2006) Interceptions of nonindigenous plant pests at US ports of entry and border crossings over a 17-year period. Biol Invasions 8:611–630CrossRefGoogle Scholar
  47. McKenzie CL (2002) Effect of tomato mottle virus (Tomov) on Bemisia tabaci biotype B (Homoptera: Aleyrodidae) oviposition and adult survivorship on healthy tomato. Fla Entomol 85:367–368CrossRefGoogle Scholar
  48. McKenzie CL, Anderson PK, Villarreal N (2004) An extensive survey of Bemisia tabaci (Homoptera: Aleyrodidae) in agricultural ecosystems in Florida. FLA Entomol 87:403–407CrossRefGoogle Scholar
  49. McNeely JA (2006) As the world gets smaller, the chances of invasion grow. Euphytica 148:5–15CrossRefGoogle Scholar
  50. Moffat AS (1999) Plant pathology—geminiviruses emerge as serious crop threat. Science 286:1835–1835CrossRefGoogle Scholar
  51. Moya A, Guirao P, Cifuentes D, Beitia F, Cenis JL (2001) Genetic diversity of Iberian populations of Bemisia tabaci (Hemiptera: Aleyrodidae) based on random amplified polymorphic DNA–polymerase chain reaction. Mol Ecol 10:891–897PubMedCrossRefGoogle Scholar
  52. Mustafa U, Ali M, Kuswanti H (2006) Indonesia. In: Ali M (ed) Chili (Capsicum spp.) Food chain analysis: setting research priorities in Asia, Technical Bulletin No. 38. AVRDC––The World Vegetable Center, pp 145–199Google Scholar
  53. Paetkau D, Slade R, Burden M, Estoup A (2004) Genetic assignment methods for the direct, real-time estimation of migration rate: a simulation-based exploration of accuracy and power. Mol Ecol 13:55–65PubMedCrossRefGoogle Scholar
  54. Pascual S, Callejas C (2004) Intra- and interspecific competition between biotypes B and Q of Bemisia tabaci (Hemiptera: Aleyrodidae) from Spain. Bull Entomol Res 94:369–375PubMedCrossRefGoogle Scholar
  55. Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295CrossRefGoogle Scholar
  56. Peterschmitt M, Granier M, Mekdoud R, Dalmon A, Gambin O, Vayssieres JF, Reynaud B (1999) First report of tomato yellow leaf curl virus in Reunion Island. Plant Dis 83:303CrossRefGoogle Scholar
  57. Pimentel D, McNair S, Janecka J, Wightman J, Simmonds C, O’Connell C, Wong E, Russel L, Zern J, Aquino T, Tsomondo T (2001) Economic and environmental threats of alien plant, animal, and microbe invasions. Agric, Ecosyst Environ 84:1–20CrossRefGoogle Scholar
  58. Pimentel D, Zuniga R, Morrison D (2005) Update on the environmental and economic costs associated with alien-invasive species in the United States. Ecol Econ 52:273–288CrossRefGoogle Scholar
  59. Piry S, Alapetite A, Cornuet JM, Paetkau D, Baudouin L, Estoup A (2004) GENECLASS2: A software for genetic assignment and first-generation migrant detection. J Hered 95:536–539PubMedCrossRefGoogle Scholar
  60. Polston JE, Anderson PK (1997) The emergence of whitefly-transmitted geminiviruses in tomato in the western hemisphere. Plant Dis 81:1358–1369CrossRefGoogle Scholar
  61. Polston JE, McGovern RJ, Brown LG (1999) Introduction of tomato yellow leaf curl virus in Florida and implications for the spread of this and other geminiviruses of tomato. Plant Dis 83:984–988CrossRefGoogle Scholar
  62. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedGoogle Scholar
  63. Rahayu STS (2004) Understanding the flight activity for decision making in management of Bemisia tabaci. Thesis Graduate Program, Gadjah Mada UniversityGoogle Scholar
  64. Rannala B, Mountain JL (1997) Detecting immigration by using multilocus genotypes. Proc Natl Acad Sci USA 94:9197–9201PubMedCrossRefGoogle Scholar
  65. Raymond M, Rousset F (1995) Genepop (version 12)—population genetics software for exact tests and ecumenicism. J Hered 86:248–249Google Scholar
  66. Rekha AR, Maruthi MN, Muniyappa V, Colvin J (2005) Occurrence of three genotypic clusters of Bemisia tabaci and the rapid spread of the B biotype in south India. Entomol Exp Appl 117:221–233CrossRefGoogle Scholar
  67. Ricciardi A, Atkinson SK (2004) Distinctiveness magnifies the impact of biological invaders in aquatic ecosystems. Ecol Lett 7:781–784CrossRefGoogle Scholar
  68. Rojas MR, Gilbertson RL, Russell DR, Maxwell DP (1993) Use of degenerate primers in the polymerase chain reaction to detect whitefly-transmitted geminiviruses. Plant Dis 77:340–347CrossRefGoogle Scholar
  69. Rosell RC, Bedford ID, Frohlich DR, Gill RJ, Brown JK, Markham PG (1997) Analysis of morphological variation in distinct populations of Bemisia tabaci (Homoptera: Aleyrodidae). Ann Entomol Soc America 90:575–589Google Scholar
  70. Schuster DJ, Mueller TF, Kring JB, Price JF (1990) Relationship of the sweetpotato whitefly to a new tomato fruit disorder in Florida. HortScience 25:1618–1620Google Scholar
  71. Simberloff D (2005) Non-native species do threaten the natural environment. J Agric Environ Ethics 18:595–607CrossRefGoogle Scholar
  72. Spasic-Boskovic O, Krizmanic I, Vujosevic M (1999) Population composition and genetic variation of water frogs (Anura: Ranidae) from Yugoslavia. Caryologia 52:9–20Google Scholar
  73. Sseruwagi P, Legg JP, Maruthi MN, Colvin J, Rey MEC, Brown JK (2005) Genetic diversity of Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) populations and presence of the B biotype and a non-B biotype that can induce silverleaf symptoms in squash, in Uganda. Ann Appl Biol 147:253–265CrossRefGoogle Scholar
  74. Sudiono, Yasin N, Hidayat SH, Hidayat P (2005) The Distribution and Molecular detection of geminivirus of chilli yellowing disease in Sumatra Island (2005). Jurnal HPT Tropika 5:113 – 121Google Scholar
  75. Sulandari S, Suseno R, Hidayat SH, Harjosudarmo J and Sosromarsono S (2001) Deteksi virus Gemini pada cabai di daerah istimewa Yogyakarta. Prodising Kongres Nasional XVI dan Seminar Ilmiah. PFI, Bogor, pp 200–202Google Scholar
  76. Sulandari S, Suseno R, Hidayat SH, Harjosudarmo J, Sosromarsono S (2006) Detection and host range study of virus associated with pepper yellow leaf curl disease. Hayati 13:1–6Google Scholar
  77. Sumardiyono YB, Sulandari S, Hartono S (2003) Epidemi Penyakit Daun Keriting Kuning Cabai. Jurnal Perlindungan Tanaman Indonesia 9:1–3Google Scholar
  78. Swofford DL (1992) PAUP: Phylogenetic Analysis Using Parsimony, Version 3.0 s. Computer program and manual distributed by the Center for Biodiversity, Illinois Natural History Survey, Champaign, IL 61820Google Scholar
  79. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680PubMedCrossRefGoogle Scholar
  80. Tsai WS, Shih SL, Green SK, Rauf A, Hidayat SH, Jan FJ (2006) Molecular characterization of pepper yellow leaf curl indonesia virus in leaf curl and yellowing diseased tomato and pepper in Indonesia. Plant Dis 90:247CrossRefGoogle Scholar
  81. Varma A, Malathi VG (2003) Emerging geminivirus problems: a serious threat to crop production. Ann Appl Biol 142:145–164CrossRefGoogle Scholar
  82. Vos JGM (1994) Integrated crop management of hot pepper (Capsicum spp.) in tropical lowlands. PhD thesis, Wageningen Agricultural University pp 109Google Scholar
  83. Vos JGM, Duriat AS (1995) Hot pepper (Capsicum spp.) production on Java, Indonesia: toward integrated crop management. Crop Prot 14:205–213CrossRefGoogle Scholar
  84. Walters LJ, Brown KR, Stam WT, Olsen JL (2006) E-commerce and Caulerpa: unregulated dispersal of invasive species. Frontiers in Ecol Environ 4:75–79CrossRefGoogle Scholar
  85. Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370CrossRefGoogle Scholar
  86. Whitfield CW, Behura SK, Berlocher SH, Clark AG, Johnston JS, Sheppard WS, Smith DR, Suarez AV, Weaver D, Tsutsui ND (2006) Thrice out of Africa: ancient and recent expansions of the honey bee, Apis mellifera. Science 314:642–645PubMedCrossRefGoogle Scholar
  87. Zang L, Liu S (2007) A comparative study on mating behaviour between the B biotype and a non-B biotype of Bemisia tabaci (Hemiptera: Aleyrodidae) from Zhejiang, China. J Insect Behav 20:151–171CrossRefGoogle Scholar
  88. Zang LS, Chen WQ, Liu SS (2006) Comparison of performance on different host plants between the B biotype and a non-B biotype of Bemisia tabaci from Zhejiang, China. Entomol Exp Appl 121:221–227CrossRefGoogle Scholar
  89. Zhang XS, Holt J, Colvin J (2000) A general model of plant-virus disease infection incorporating vector aggregation. Plant Pathol 49:435–444CrossRefGoogle Scholar
  90. Zhang LP, Zhang YJ, Zhang WJ, Wu QJ, Xu BY, Chu D (2005) Analysis of genetic diversity among different geographical populations and determination of biotypes of Bemisia tabaci in China. J Appl Entomol 129:121–128CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Paul J. De Barro
    • 1
  • Sri Hendrastuti Hidayat
    • 2
  • Don Frohlich
    • 3
  • Siti Subandiyah
    • 4
  • Shigenori Ueda
    • 5
  1. 1.CSIRO EntomologyIndooroopillyAustralia
  2. 2.Department of Plant Pests and DiseasesBogor Agricultural UniversityBogorIndonesia
  3. 3.Department of BiologyUniversity of St ThomasHoustonUSA
  4. 4.Department of Entomology and Plant Pathology, Faculty of AgricultureGadjah Mada UniversityYogyakartaIndonesia
  5. 5.National Agricultural Research Centre for Kyushu, Okinawa RegionKumamotoJapan

Personalised recommendations