Biological Invasions

, Volume 8, Issue 7, pp 1547–1560

Effects of growing conditions on the growth of and interactions between salt marsh plants: implications for invasibility of habitats

  • Q. Wang
  • C. H. Wang
  • B. Zhao
  • Z. J. Ma
  • Y. Q. Luo
  • J. K. Chen
  • B. Li


A common but often less tested explanation for the successful invasion of alien species is that invasive alien species outcompete their co-occurring natives, which may not always be the case. In this study, we established artificial environmental gradients in a series of pot experiments with controlled environments to investigate the effects of salinity, sediment type and waterlogging on the performance of and interactions between Phragmites australis (native) and Spartina alterniflora (alien), which generally co-exist in the saline intertidal zones of Chinese and American coasts. Significant effects of salinity and waterlogging were detected on biomass production and morphological characteristics of S. alterniflora and P. australis, and the competitive interactions between the two species were found to vary with all three environmental factors in our experiments. Relative Neighbor Effect (RNE) analyses indicate that competitive dominance of S. alterniflora occurred under the conditions of high salinity, sandy sediment and full immersion, whereas P. australis showed competitive dominance under the conditions of low salinity and non-immersion. Our results suggest that S. alterniflora might outcompete P. australis under conditions present in early salt marsh succession, which support the viewpoint that the outcomes of competition between co-occurring native and invasive alien plants depend on the growing conditions. The implication of this study is that in response to the environmental changes expected from seawater intrusion and sea-level rise, the range of S. alterniflora is expected to expand further in the Yangtze River estuary in the future.


growing conditions interspecific competition invasive species Phragmites australis plant invasion salt marsh succession Spartina alterniflora 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Able, KW, Hagan, SM 2000Effects of common reed (Phragmites australis) invasion on marsh surface macrofauna: response of fishes and decapod crustaceansEstuaries23633646CrossRefGoogle Scholar
  2. Alpert, P, Bone, E, Holzapfel, C 2000Invasiveness, invasibility and the role of environmental stress in the spread of non-native plantsPerspectives in Plant Ecology Evolution and Systematics35266CrossRefGoogle Scholar
  3. Armstrong, J, Armstrong, W, Beckett, PM, Halder, JE, Lythe, S, Holt, R, Sinclair, A 1996Pathways of aeration and the mechanisms and beneficial effects of humidity- and venturi-induced convections in Phragmites australis (Cav) Trin ex SteudAquatic Botany54177197CrossRefGoogle Scholar
  4. Benoit, LK, Askins, RA 1999Impact of the spread of Phragmites on the distribution of birds in Connecticut tidal marshesWetlands19194208Google Scholar
  5. Bertness, MD, Ellison, AM 1987Determinants of pattern in a New England salt marsh communityEcological Monographs57129147CrossRefGoogle Scholar
  6. Boesch, DF, Josselyn, MN, Mehta, AJ, Morris, JT, Nuttle, WK, Simenstad, CA, Swift, DJP 1994Scientific assessment of coastal wetland loss, restoration and management in LouisianaJournal of Coastal Research, Special Issue20103Google Scholar
  7. Bradley, PM, Morris, JT 1991Relative importance of ion exclusion, secretion and accumulation in Spartina-Alterniflora LoiselJournal of Experimental Botany4215251532Google Scholar
  8. Brereton, AJ 1971The structure of species populations in the initial stages of saltmarsh successionJournal of Ecology59321338CrossRefGoogle Scholar
  9. Brewer, JS, Levine, JM, Bertness, MD 1997Effects of biomass removal and elevation on species richness in a New England salt marshOikos80333341Google Scholar
  10. Buttery BR and Lambert JM (1965) Competition between Glyceria maxima and Phragmites communis in the region of Surlington Broad I. The competition mechanism. Journal of Ecology 53: 163–181Google Scholar
  11. Callaway, JC, Josselyn, MN 1992The introduction and spread of smooth cordgrass (Spartina-Alterniflora) in south San-Francisco BayEstuaries15218226CrossRefGoogle Scholar
  12. Chambers, RM, Meyerson, LA, Saltonstall, K 1999Expansion of Phragmites australis into tidal wetlands of North AmericaAquatic Botany64261273CrossRefGoogle Scholar
  13. Chambers, RM, Mozdzer, TJ, Ambrose, JC 1998Effects of salinity and sulfide on the distribution of Phragmites australis and Spartina alterniflora in a tidal saltmarshAquatic Botany62161169CrossRefGoogle Scholar
  14. Chen, JK, Ma, ZJ, Li, B, Yuan, JF, Zhang, Z 2003Comprehensive Surveys on Shanghai Jiuduansha Wetland Nature, Reserve the Yangtze River estuaryScience PressBeijing94115Google Scholar
  15. Chen ZY (2004) Ecological impacts of introduced Spartina alterniflora invasions in the coastal ecosystems of Chongming Dongtan, the Yangtze River estuary. PhD Thesis, Fudan University, Shanghai, pp 9–16Google Scholar
  16. Chen, ZY, Li, B, Zhong, Y, Chen, JK 2004Local competitive effects of introduced Spartina alterniflora on Scirpus mariqueter at Dongtan of Chongming Island, the Yangtze River estuary and their potential ecological consequencesHydrobiologia52899106CrossRefGoogle Scholar
  17. Christiansen, T, Wiberg, PL, Milligan, TG 2000Flow and sediment transport on a tidal salt marsh surfaceEstuarine Coastal and Shelf Science50315331CrossRefGoogle Scholar
  18. Chung, CH 199330 Years of Ecological Engineering with Spartina Plantations in ChinaEcological Engineering2261289CrossRefGoogle Scholar
  19. Colmer, TD, Fan, TWM, Lauchli, A, Higashi, RM 1996Interactive effects of salinity, nitrogen and sulphur on the organic solutes in Spartina alterniflora leaf bladesJournal of Experimental Botany47369375Google Scholar
  20. Daehler, CC 2003Performance comparisons of co-occurring native and alien invasive plants: implications for conservation and restorationAnnual Review of Ecology Evolution and Systematics34183211CrossRefGoogle Scholar
  21. Daehler, CC, Strong, DR 1996Status, prediction and prevention of introduced cordgrass Spartina spp. invasions in Pacific estuaries, USABiological Conservation785158CrossRefGoogle Scholar
  22. Flynn, KM, McKee, KL, Mendelssohn, IA 1995Recovery of fresh-water marsh vegetation after a saltwater intrusion eventOecologia1036372CrossRefGoogle Scholar
  23. Gosselink, JG 1970Growth of Spartina patens and Spartina alterniflora as influenced by salinity and source of nitrogenCoastal Studies Bulletin, Louisiana State University597110Google Scholar
  24. Grosholz, E 2002Ecological and evolutionary consequences of coastal invasionsTrends in Ecology & Evolution172227CrossRefGoogle Scholar
  25. Grace, JB, Pugesek, BH 1997A structural equation model of plant species richness and its application to a coastal wetlandAmerican Naturalist149436460CrossRefGoogle Scholar
  26. Gries, C, Kappen, L, Losch, R 1990Mechanism of flood tolerance in reed, Phragmites-Australis (Cav) Trin Ex SteudelNew Phytologist114589593CrossRefGoogle Scholar
  27. Haines, BL, Dunn, EL 1976Growth and resource allocation responses of Spartina alterniflora Loisel. to three levels of NH4–N, Fe, and NaCl in solution cultureBotanical Gazette137224230CrossRefGoogle Scholar
  28. Hartzendorf, T, Rolletschek, H 2001Effects of NaCl-salinity on amino acid and carbohydrate contents of Phragmites australisAquatic Botany69195208CrossRefGoogle Scholar
  29. Hellings, SE, Gallagher, JL 1992The effects of salinity and flooding on Phragmites-AustralisJournal of Applied Ecology294149CrossRefGoogle Scholar
  30. Hemminga, MA, Buth, GJC 1991Decomposition in salt-marsh ecosystems of the Sw Netherlands – the effects of biotic and abiotic factorsVegetatio927383Google Scholar
  31. Huckle, JM, Potter, JA, Marrs, RH 2000Influence of environmental factors on the growth and interactions between salt marsh plants: effects of salinity, sediment and waterloggingJournal of Ecology88492505CrossRefGoogle Scholar
  32. Hwang, YH, Morris, JT 1994Whole-plant gas-exchange responses of Spartina-Alterniflora (Poaceae) to a range of constant and transient salinitiesAmerican Journal of Botany81659665CrossRefGoogle Scholar
  33. Landin, MC 1991

    Growth habits and other considerations of smooth cordgrass, Spartina alterniflora Loisel

    Mumford, TFPeyton, PSayce, JRHarbell, S eds. Spartina Workshop Record, Washington Sea Grant ProgramUniversity of WashingtonSeattle1520
    Google Scholar
  34. Lee, HJ, Chao, SY, Liu, KK 2004Effects of reduced Yangtze River discharge on the circulation of surrounding seasTerrestrial Atmospheric and Oceanic Sciences15111132Google Scholar
  35. Lewis, MA, Weber, DE 2002Effects of substrate salinity on early seedling survival and growth of Scirpus robustus Pursh and Spartina alterniflora LoiselEcotoxicology111926PubMedCrossRefGoogle Scholar
  36. Lissner, J, Schierup, HH 1997Effects of salinity on the growth of Phragmites australisAquatic Botany55247260CrossRefGoogle Scholar
  37. Marco, DE, Paez, SA 2000Invasion of Gleditsia triacanthos in Lithraea ternifolia montane forests of central ArgentinaEnvironmental Management26409419PubMedCrossRefGoogle Scholar
  38. Maricle, BR, Lee, RW 2002Aerenchyma development and oxygen transport in the estuarine cordgrasses Spartina alterniflora and S-anglicaAquatic Botany74109120CrossRefGoogle Scholar
  39. Markham, JH, Chanway, CP 1996Measuring plant neighbour effectsFunctional Ecology10548549Google Scholar
  40. Marks, M, Lapin, B, Randall, J 1994Phragmites-Australis (P-communis) – threats, management, and monitoringNatural Areas Journal14285294Google Scholar
  41. Meyerson L, Saltonstall K, Windham L, Kiviat E and Findlay S. (2000) A comparison of Phragmites australis in freshwater and brackish marsh environments in North America. Wetlands Ecology and Management 8: 89–103Google Scholar
  42. McKee, KL, Mendelssohn, IA, Burdick, DM 1989Effect of long-term flooding on root metabolic response in five freshwater marsh plant speciesCanadian Journal of Botany6734463452CrossRefGoogle Scholar
  43. Mendelssohn, IA, McKee, KL 1988Spartina alterniflora dieback in Louisiana: time course investigation of soil and waterlogging effectsJournal of Ecology76509521CrossRefGoogle Scholar
  44. Mendelssohn, IA, McKee, KL, Patrick, JWH 1981Oxygen deficiency in Spartina alterniflora roots: metabolic adaptation to anoxiaScience214439441CrossRefPubMedGoogle Scholar
  45. Mendelssohn, IA, Postek, MT 1982Elemental analysis of deposits on the roots of Spartina alterniflora LoiselAmerican Journal of Botany22904912CrossRefGoogle Scholar
  46. Naidoo, G, McKee, KL, Mendelssohn, IA 1992Anatomical and metabolic responses to waterlogging and salinity in Spartina-Alterniflora and S-Patens (Poaceae)American Journal of Botany79765770CrossRefGoogle Scholar
  47. Perry, LG, Galatowitsch, SM, Rosen, CJ 2004Competitive control of invasive vegetation: a native wetland sedge suppresses Phalaris arundinacea in carbon-enriched soilJournal of Applied Ecology41151162CrossRefGoogle Scholar
  48. Phleger, CF 1971Effect of salinity on growth of a salt marsh grassEcology52908911CrossRefGoogle Scholar
  49. Pimentel, D, Lach, L, Zuniga, R, Morrison, D 2000Environmental and economic costs of nonindigenous species in the United StatesBioscience505365CrossRefGoogle Scholar
  50. Pimentel, D, McNair, S, Janecka, J, Wightman, J, Simmonds, C, O’Connell, C, Wong, E, Russel, L, Zern, J, Aquino, T, Tsomondo, T 2001Economic and environmental threats of alien plant, animal, and microbe invasionsAgriculture Ecosystems & Environment84120CrossRefGoogle Scholar
  51. Rodriguez, JP 2001Exotic species introductions into South America: an underestimated threat?Biodiversity and Conservation1019831996CrossRefGoogle Scholar
  52. Sanchez, JM, Otero, XL, Izco, J 1998Relationships between vegetation and environmental characteristics in a salt-marsh system on the coast of Northwest SpainPlant Ecology13618CrossRefGoogle Scholar
  53. Sayce K (1991) Species displaced by Spartina in the pacific northwest. In: Mumford TF, Peyton P, Sayce YR and Harbell S (eds) Spartina Workshop Record, Washington Sea Grant Program, University of Washington, Seattle pp 26–27Google Scholar
  54. Scholten, M, Rozema, J 1990

    The competitive ability of Spartina anglica on Dutch salt marshes

    Gray, AJBenham, PEM eds. Spartina Anglica: A Research ReviewHMSOLondon3947
    Google Scholar
  55. Sharaf el Din, SH 1977Effect of the Aswan High Dam on the Nile flood and on the estuarine and coastal circulation pattern along the Mediterranean Egyptian coastLimnology and Oceanography22194207CrossRefGoogle Scholar
  56. Smart, RM, Barko, JW 1980Nitrogen nutrition and salinity tolerance of Distichlis spicata and Spartina alternifloraEcology61630638CrossRefGoogle Scholar
  57. Vernberg, FJ 1993Salt-marsh processes – a reviewEnvironmental Toxicology and Chemistry1221672195Google Scholar
  58. Wang, Y 1998Sea-level changes, human impacts and coastal responses in ChinaJournal of Coastal Research143136Google Scholar
  59. Wijte, A, Gallagher, JL 1996Effect of oxygen availability and salinity on early life history stages of salt marsh plants.1. different germination strategies of Spartina alterniflora and Phragmites australis (Poaceaei)American Journal of Botany8313371342CrossRefGoogle Scholar
  60. Wilson, SD, Keddy, PA 1986Species competitive ability and position along a natural stress/disturbance gradientEcology6712361242CrossRefGoogle Scholar
  61. Windham, L, Lathrop, RG 1999Effects of Phragmites australis (common reed) invasion on aboveground biomass and soil properties in brackish tidal marsh of the Mullica River, New JerseyEstuaries22927935CrossRefGoogle Scholar
  62. Yang, GS, Zhu, JW 1993A study of impacts of global sea-level rise on salt–water-intrusion into the Changjiang estuaryScience In China Series B-Chemistry3613911401Google Scholar
  63. Zhang, EF, Chen, XQ 2002Human impacts on water discharges of rivers into the sea – a case study in Changjiang River and Yellow RiverJournal of East China Normal Universit y (Natural Science)28186Google Scholar
  64. Zhang, KQ, Douglas, BC, Leatherman, SP 2004Global warming and coastal erosionClimatic Change644158CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Q. Wang
    • 1
  • C. H. Wang
    • 1
  • B. Zhao
    • 1
  • Z. J. Ma
    • 1
  • Y. Q. Luo
    • 1
  • J. K. Chen
    • 1
  • B. Li
    • 1
  1. 1.Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity ScienceFudan UniversityShanghaiP.R. China

Personalised recommendations