Biological Invasions

, Volume 7, Issue 5, pp 863–875 | Cite as

Modeling the Circulation of a Disease Between Two Host Populations on non Coincident Spatial Domains

  • W.–-E. Fitzgibbon
  • M. Langlais
  • F. Marpeau
  • J.-–J. Morgan


We derive a reaction–diffusion system modeling the spatial propagation of a disease with kinetics occurring on distinct spatial domains. This corresponds to the actual invasion of a disease from a species living in a given spatial domain toward a second species living in a different spatial domain. We study the global existence of solutions and discuss the long time behavior of solutions. Then we consider a special case, based on a model of brain worm infection from white-tailed deer to moose populations, for which we discuss the invasion success/failure process and disprove a conjecture stated in an earlier work.


 distinct spatial domains large-time behavior reaction–diffusion equations 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bailey, NTJ 1975The Mathematical Theory of Infectious Diseases and its Applications2Hafner PressNew York413Google Scholar
  2. Busenberg, S, Cooke, KC 1993Vertically transmitted diseases, Biomathematics Volume 23Springer VerlagNew York248Google Scholar
  3. Cantrell, RS, Cosner, C 2003Spatial Ecology Via Reaction EquationsJohn Wiley and SonsChichester, UK456Google Scholar
  4. Diekmann, O, De Jong, MCM, De Koeijer, AA, Reijnders, P 1995The force of infection in populations of varying size: a modeling problemJournal of Biological Systems3519529CrossRefGoogle Scholar
  5. Fitzgibbon, WE, Langlais, M 1997Diffusive SEIR models with logistic population controlCommunications on Applied Nonlinear Analysis4116Google Scholar
  6. Fitzgibbon, WE, Morgan, JJ, Sanders, R 1992Global existence and boundedness for a class of inhomogeneous semilinear parabolic equationsNonlinear Analysis TMA19885899CrossRefGoogle Scholar
  7. Fitzgibbon, WE, Martin, C, Morgan, JJ 1994Uniform bounds and asymptotic behavior for a diffusive epidemic model with criss-cross dynamicsJournal of Mathematical Analysis and Applications184399414CrossRefGoogle Scholar
  8. Fitzgibbon, WE, Langlais, M, Parrott, ME, Webb, GW 1995A diffusive system with age dependence modeling FIVNonlinear Analysis TMA25975989CrossRefGoogle Scholar
  9. Fitzgibbon, WE, Parrott, M, Webb, GF 1995Diffusive epidemic models with criss-cross dynamicsMathematical Biosciences128131155CrossRefPubMedGoogle Scholar
  10. Fitzgibbon, WE, Langlais, M, Morgan, JJ 1999Eventually uniform bounds for a quasipositive reaction diffusion systemJapan Journal of Industrial and Applied Mathematics16225241Google Scholar
  11. Fitzgibbon, WE, Langlais, M, Morgan, JJ 2001A mathematical model of the spread of feline leukemia virus (FeLV) through a highly heterogeneous domainSIAM Journal of Mathematical Analysis33570588CrossRefGoogle Scholar
  12. Fitzgibbon, WE, Langlais, M, Morgan, JJ 2004A reaction-diffusion system modeling direct and indirect transmission of a diseaseDCDS B4893910Google Scholar
  13. Fitzgibbon, WE, Langlais, M, Morgan, JJ 2004A reaction diffusion system on non-coincident domains modeling the circulation of a disease between two host PopulationsDifferential and Integral Equations17781802Google Scholar
  14. Hale, J 1988Asymptotic Behavior of Dissipative SystemsAmerican Mathematical SocietyProvidence, Rhode Island198Google Scholar
  15. Henry, D 1981Geometric Theory of Semilinear Parabolic EquationsSpringer-VerlagBerlin348Google Scholar
  16. Hollis, S, Martin, RH, Pierre, M 1987Global existence and boundedness in reaction diffusion systemsSIAM Journal of Mathematical Analysis18744761Google Scholar
  17. Ladyzenskaja, OA, Solonnikov, V, Ural’ceva, N 1968Linear and quasilinear equations of parabolic typeTranslations of AMS 23Providence, Rhode Island736Google Scholar
  18. Morgan, JJ 1989Global existence for semilinear parabolic systemsSIAM Journal of Mathematical Analysis2011281144CrossRefGoogle Scholar
  19. Morgan, JJ 1990Boundedness and decay results for reaction diffusion systemsSIAM Journal of Mathematical Analysis2111721184CrossRefGoogle Scholar
  20. Olsson, GE, White, N, Ahlm, C, Elgh, F, Verlemyr, A-C, Juto, P 2002Demographic factors associated with hantavirus infection in bank voles (Clethrionomys glareolus)Emerging Infectious Diseases8924929PubMedGoogle Scholar
  21. Pazy, A 1983Semigroups of Linear Operators and Applications to Partial Differential EquationsSpringer VerlagBerlin279Google Scholar
  22. Sauvage, F, Penalba, C, Vuillaume, P, Boue, F, Coudrier, D, Pontier, D,  et al. 2002Puumala hantavirus infection in humans and in the reservoir host, Ardennes region, FranceEmerging Infectious Diseases815091511PubMedGoogle Scholar
  23. Sauvage, F, Langlais, M, Yoccoz, NG, Pontier, D. 2003Modelling hantavirus in cyclic bank voles the role of indirect transmission on virus persistenceJournal of Animal Ecology72113CrossRefGoogle Scholar
  24. Schmaljohn, C, Hjelle, B 1997Hantaviruses: a global disease problemEmerging Infectious Diseases395104PubMedGoogle Scholar
  25. Schmitz, OJ, Nudds, TD 1994Parasite-mediated competition in deer and moose: how strong is the effect of meningeal worm on moose?Ecological Applications491103Google Scholar
  26. Sell, G, You, Y 2002Dynamics of Evolutionary SystemsSpringer-VerlagNew York670Google Scholar
  27. Shaman, J, Day, JF, Stieglitz, M 2002Drought-induced amplification of Saint Louis encephalitis virusFlorida. Emerging Infectious Diseases8575580Google Scholar
  28. Smoller, J 1983Shock Waves and Reaction Diffusion EquationsSpringer VerlagNew York632Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • W.–-E. Fitzgibbon
    • 1
  • M. Langlais
    • 2
  • F. Marpeau
    • 3
  • J.-–J. Morgan
    • 4
  1. 1.Departments of Engineering Technology and MathematicsUniversity of HoustonHoustonUSA
  2. 2.MAB, UMR CNRS 5466Bordeaux CedexFrance
  3. 3.MAB, UMR CNRS 5466Talence CedexFrance
  4. 4.Department of MathematicsUniversity of HoustonHoustonUSA

Personalised recommendations