Advertisement

Biotechnology Letters

, Volume 42, Issue 3, pp 357–373 | Cite as

Nanozymes for medical biotechnology and its potential applications in biosensing and nanotherapeutics

  • Samman Munir
  • Asad Ali Shah
  • Hazir Rahman
  • Muhammad Bilal
  • Muhammad Shahid Riaz Rajoka
  • Abdul Arif Khan
  • Mohsin KhurshidEmail author
Review

Abstract

Recent past years have witnessed the development of several artificial enzymes, using different materials to mimic natural enzymes with respect to their structure and functions. The nanozymes are nanomaterials possessing similar characteristics to the natural enzymes and have emerged recently as an innovative class of artificial enzymes. The nanozymes have got remarkable attention from the researchers and notable developments have been achieved owing to their unique properties compared with natural enzymes and classic artificial enzymes. In this regard, several nanomaterials have been scrutinized so far to mimic different natural enzymes for wider applications ranging from imaging, sensing, water treatment, pollutant removal, and therapeutics. The applications of nanozymes in biomedicine research are fast-growing and various nanozymes have been implicated in diagnostic medicine, targeted cancer therapy. Such abilities make them an appropriate alternative for the development of affordable, sustainable and safe diagnostic as well as therapeutic agents.

Keywords

Aptasensors Biomedicine Biosensors Enzymes immunoassays 

Notes

References

  1. Abdolmohammad-Zadeh H, Rahimpour E (2015) A novel chemosensor for Ag(I) ion based on its inhibitory effect on the luminol–H2O2 chemiluminescence response improved by CoFe2O4 nano-particles. Sens Actuator B-Chem 209:496–504.  https://doi.org/10.1016/j.snb.2014.11.096 CrossRefGoogle Scholar
  2. Ali SS, Hardt JI, Quick KL, Kim-Han JS, Erlanger BF, Huang TT, Epstein CJ, Dugan LL (2004) A biologically effective fullerene (C60) derivative with superoxide dismutase mimetic properties. Free Radic Biol Med 37(8):1191–1202.  https://doi.org/10.1016/j.freeradbiomed.2004.07.002 CrossRefPubMedGoogle Scholar
  3. Ariga K, Ji Q, Mori T, Naito M, Yamauchi Y, Abe H, Hill JP (2013) Enzyme nanoarchitectonics: organization and device application. Chem Soc Rev 42(15):6322–6345.  https://doi.org/10.1039/c2cs35475f CrossRefPubMedGoogle Scholar
  4. Asati A, Santra S, Kaittanis C, Nath S, Perez JM (2009) Oxidase-like activity of polymer-coated cerium oxide nanoparticles. Angew Chem Int Ed Engl 48(13):2308–2312.  https://doi.org/10.1002/anie.200805279 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Atilgan A, Islamoglu T (2017) Detoxification of a sulfur mustard simulant using a BODIPY-functionalized zirconium-based metal-organic framework. ACS Appl Mater Interfaces 9(29):24555–24560.  https://doi.org/10.1021/acsami.7b05494 CrossRefPubMedGoogle Scholar
  6. Bai Y, Chen J, Zimmerman SC (2018) Designed transition metal catalysts for intracellular organic synthesis. Chem Soc Rev 47(5):1811–1821.  https://doi.org/10.1039/c7cs00447h CrossRefPubMedGoogle Scholar
  7. Barnham KJ, Masters CL, Bush AI (2004) Neurodegenerative diseases and oxidative stress. Nat Rev Drug Discov 3(3):205–214.  https://doi.org/10.1038/nrd1330 CrossRefPubMedGoogle Scholar
  8. Berlett BS, Stadtman ER (1997) Protein oxidation in aging, disease, and oxidative stress. J Biol Chem 272(33):20313–20316.  https://doi.org/10.1074/jbc.272.33.20313 CrossRefPubMedGoogle Scholar
  9. Bleeker EA, de Jong WH, Geertsma RE, Groenewold M, Heugens EH, Koers-Jacquemijns M, van de Meent D, Popma JR, Rietveld AG, Wijnhoven SW, Cassee FR, Oomen AG (2013) Considerations on the EU definition of a nanomaterial: science to support policy making. Regul Toxicol Pharmacol 65(1):119–125.  https://doi.org/10.1016/j.yrtph.2012.11.007 CrossRefPubMedGoogle Scholar
  10. Bone RC, Balk RA, Cerra FB, Dellinger RP, Fein AM, Knaus WA, Schein RM, Sibbald WJ (1992) Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. The ACCP/SCCM Consensus Conference Committee. American College of Chest Physicians/Society of Critical Care Medicine. Chest 101(6):1644–1655.  https://doi.org/10.1378/chest.101.6.1644 CrossRefPubMedGoogle Scholar
  11. Butler JE (2000) Enzyme-linked immunosorbent assay. J Immunoassay 21(2–3):165–209.  https://doi.org/10.1080/01971520009349533 CrossRefPubMedGoogle Scholar
  12. Cai X, Gao W, Ma M, Wu M, Zhang L, Zheng Y, Chen H, Shi J (2015) A Prussian blue-based core-shell hollow-structured mesoporous nanoparticle as a smart theranostic agent with ultrahigh pH-responsive longitudinal relaxivity. Adv Mater 27(41):6382–6389.  https://doi.org/10.1002/adma.201503381 CrossRefPubMedGoogle Scholar
  13. Cai S, Qi C, Li Y, Han Q, Yang R, Wang C (2016) PtCo bimetallic nanoparticles with high oxidase-like catalytic activity and their applications for magnetic-enhanced colorimetric biosensing. J Mater Chem B 4(10):1869–1877.  https://doi.org/10.1039/C5TB02052B CrossRefGoogle Scholar
  14. Celardo I, Pedersen JZ, Traversa E, Ghibelli L (2011) Pharmacological potential of cerium oxide nanoparticles. Nanoscale 3(4):1411–1420.  https://doi.org/10.1039/c0nr00875c CrossRefPubMedGoogle Scholar
  15. Chankeshwara SV, Indrigo E, Bradley M (2014) Palladium-mediated chemistry in living cells. Curr Opin Chem Biol 21:128–135.  https://doi.org/10.1016/j.cbpa.2014.07.007 CrossRefPubMedGoogle Scholar
  16. Chen J, Patil S, Seal S, McGinnis JF (2006) Rare earth nanoparticles prevent retinal degeneration induced by intracellular peroxides. Nat Nanotechnol 1(2):142–150.  https://doi.org/10.1038/nnano.2006.91 CrossRefPubMedGoogle Scholar
  17. Chen HC, Tu YM, Hou CC, Lin YC, Chen CH, Yang KH (2015a) Direct electron transfer of glucose oxidase and dual hydrogen peroxide and glucose detection based on water-dispersible carbon nanotubes derivative. Anal Chim Acta 867:83–91.  https://doi.org/10.1016/j.aca.2015.01.027 CrossRefPubMedGoogle Scholar
  18. Chen L, Sha L, Qiu Y, Wang G, Jiang H, Zhang X (2015b) An amplified electrochemical aptasensor based on hybridization chain reactions and catalysis of silver nanoclusters. Nanoscale 7(7):3300–3308.  https://doi.org/10.1039/C4NR06664B CrossRefPubMedGoogle Scholar
  19. Chen PC, Liu X, Hedrick JL, Xie Z, Wang S, Lin QY, Hersam MC, Dravid VP, Mirkin CA (2016) Polyelemental nanoparticle libraries. Science 352(6293):1565–1569.  https://doi.org/10.1126/science.aaf8402 CrossRefPubMedGoogle Scholar
  20. Chen ZX, Liu MD, Zhang MK, Wang SB, Xu L, Li CX, Gao F, Xie BR, Zhong ZL, Zhang XZ (2018) Interfering with lactate-fueled respiration for enhanced photodynamic tumor therapy by a porphyrinic MOF nanoplatform. Adv Func Mater 28(36):1803498.  https://doi.org/10.1002/adfm.201803498 CrossRefGoogle Scholar
  21. Cheng L, Gong H, Zhu W, Liu J, Wang X, Liu G, Liu Z (2014) PEGylated Prussian blue nanocubes as a theranostic agent for simultaneous cancer imaging and photothermal therapy. Biomaterials 35(37):9844–9852.  https://doi.org/10.1016/j.biomaterials.2014.09.004 CrossRefPubMedGoogle Scholar
  22. Chi M, Nie G, Jiang Y, Yang Z, Zhang Z, Wang C, Lu X (2016) Self-assembly fabrication of coaxial Te@poly(3,4-ethylenedioxythiophene) nanocables and their conversion to Pd@poly(3,4-ethylenedioxythiophene) nanocables with a high peroxidase-like activity. ACS Appl Mater Interfaces 8(1):1041–1049.  https://doi.org/10.1021/acsami.5b11488 CrossRefPubMedGoogle Scholar
  23. Comotti M, Della Pina C, Matarrese R, Rossi M (2004) The catalytic activity of “naked” gold particles. Angew Chem Int Ed 43(43):5812–5815.  https://doi.org/10.1002/anie.200460446 CrossRefGoogle Scholar
  24. Cordy A, Yeh K-n (1984) Blue dye identification on cellulosic fibers: indigo, logwood, and Prussian blue. JAIC 24(1):33–39.  https://doi.org/10.1179/019713684806028188 CrossRefGoogle Scholar
  25. Ding N, Yan N, Ren C, Chen X (2010) Colorimetric determination of melamine in dairy products by Fe(3)O(4) magnetic nanoparticles-H(2)O(2)-ABTS detection system. Anal Chem 82(13):5897–5899.  https://doi.org/10.1021/ac100597s CrossRefPubMedGoogle Scholar
  26. Dowding JM, Song W, Bossy K, Karakoti A, Kumar A, Kim A, Bossy B, Seal S, Ellisman MH, Perkins G, Self WT, Bossy-Wetzel E (2014) Cerium oxide nanoparticles protect against Abeta-induced mitochondrial fragmentation and neuronal cell death. Cell Death Differ 21(10):1622–1632.  https://doi.org/10.1038/cdd.2014.72 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Duan D, Fan K, Zhang D, Tan S, Liang M, Liu Y, Zhang J, Zhang P, Liu W, Qiu X, Kobinger G, Fu Gao G, Yan X (2015) Nanozyme-strip for rapid local diagnosis of Ebola. Biosens Bioelectron 74:134–141.  https://doi.org/10.1016/j.bios.2015.05.025 CrossRefPubMedGoogle Scholar
  28. Dugan LL, Gabrielsen JK, Yu SP, Lin TS, Choi DW (1996) Buckminsterfullerenol free radical scavengers reduce excitotoxic and apoptotic death of cultured cortical neurons. Neurobiol Dis 3(2):129–135.  https://doi.org/10.1006/nbdi.1996.0013 CrossRefPubMedGoogle Scholar
  29. Dugan LL, Turetsky DM, Du C, Lobner D, Wheeler M, Almli CR, Shen CK, Luh TY, Choi DW, Lin TS (1997) Carboxyfullerenes as neuroprotective agents. Proc Natl Acad Sci USA 94(17):9434–9439.  https://doi.org/10.1073/pnas.94.17.9434 CrossRefPubMedGoogle Scholar
  30. Feng L, Musto CJ, Suslick KS (2010) A simple and highly sensitive colorimetric detection method for gaseous formaldehyde. J Am Chem Soc 132(12):4046–4047.  https://doi.org/10.1021/ja910366p CrossRefPubMedPubMedCentralGoogle Scholar
  31. Feng L, Dong Z, Liang C, Chen M, Tao D, Cheng L, Yang K, Liu Z (2018) Iridium nanocrystals encapsulated liposomes as near-infrared light controllable nanozymes for enhanced cancer radiotherapy. Biomaterials 181:81–91.  https://doi.org/10.1016/j.biomaterials.2018.07.049 CrossRefPubMedGoogle Scholar
  32. Feng W, Han X, Wang R, Gao X, Hu P, Yue W, Chen Y, Shi J (2019) Nanocatalysts-augmented and photothermal-enhanced tumor-specific sequential nanocatalytic therapy in both NIR-I and NIR-II biowindows. Adv Mater 31(5):e1805919.  https://doi.org/10.1002/adma.201805919 CrossRefPubMedGoogle Scholar
  33. Fu PP, Xia Q, Hwang HM, Ray PC, Yu H (2014) Mechanisms of nanotoxicity: generation of reactive oxygen species. J Food Drug Anal 22(1):64–75.  https://doi.org/10.1016/j.jfda.2014.01.005 CrossRefPubMedGoogle Scholar
  34. Gao L, Yan X (2016) Nanozymes: an emerging field bridging nanotechnology and biology. Sci China Life Sci 59(4):400–402.  https://doi.org/10.1007/s11427-016-5044-3 CrossRefGoogle Scholar
  35. Gao L, Zhuang J, Nie L, Zhang J, Zhang Y, Gu N, Wang T, Feng J, Yang D, Perrett S, Yan X (2007) Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol 2(9):577–583.  https://doi.org/10.1038/nnano.2007.260 CrossRefPubMedGoogle Scholar
  36. Gao L, Giglio KM, Nelson JL, Sondermann H, Travis AJ (2014) Ferromagnetic nanoparticles with peroxidase-like activity enhance the cleavage of biological macromolecules for biofilm elimination. Nanoscale 6(5):2588–2593.  https://doi.org/10.1039/c3nr05422e CrossRefPubMedPubMedCentralGoogle Scholar
  37. Gao Z, Xu M, Lu M, Chen G, Tang D (2015) Urchin-like (gold core)@(platinum shell) nanohybrids: a highly efficient peroxidase-mimetic system for in situ amplified colorimetric immunoassay. Biosens Bioelectron 70:194–201.  https://doi.org/10.1016/j.bios.2015.03.039 CrossRefPubMedGoogle Scholar
  38. Gao L, Fan K, Yan X (2017) Iron oxide nanozyme: a multifunctional enzyme mimetic for biomedical applications. Theranostics 7(13):3207–3227.  https://doi.org/10.7150/thno.19738 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Ge S, Liu W, Liu H, Liu F, Yu J, Yan M, Huang J (2015) Colorimetric detection of the flux of hydrogen peroxide released from living cells based on the high peroxidase-like catalytic performance of porous PtPd nanorods. Biosens Bioelectron 71:456–462.  https://doi.org/10.1016/j.bios.2015.04.055 CrossRefPubMedGoogle Scholar
  40. Gechev TS, Van Breusegem F, Stone JM, Denev I, Laloi C (2006) Reactive oxygen species as signals that modulate plant stress responses and programmed cell death. Bioessays 28(11):1091–1101.  https://doi.org/10.1002/bies.20493 CrossRefPubMedGoogle Scholar
  41. Gong L, Zhao Z, Lv YF, Huan SY, Fu T, Zhang XB, Shen GL, Yu RQ (2015) DNAzyme-based biosensors and nanodevices. Chem Commun (Camb) 51(6):979–995.  https://doi.org/10.1039/c4cc06855f CrossRefGoogle Scholar
  42. Guo Y, Deng L, Li J, Guo S, Wang E, Dong S (2011) Hemin-graphene hybrid nanosheets with intrinsic peroxidase-like activity for label-free colorimetric detection of single-nucleotide polymorphism. ACS Nano 5(2):1282–1290.  https://doi.org/10.1021/nn1029586 CrossRefPubMedGoogle Scholar
  43. Haider W, Hayat A, Raza Y, Anwar Chaudhry A, Rehman I-U, Marty JL (2015) Gold nanoparticle decorated single walled carbon nanotube nanocomposite with synergistic peroxidase like activity for d-alanine detection. RSC Adv 5(32):24853–24858.  https://doi.org/10.1039/C5RA01258A CrossRefGoogle Scholar
  44. Han L, Shic J, Liu A (2017) Novel biotemplated MnO2 1D nanozyme with controllable peroxidase-like activity and unique catalytic mechanism and its application for glucose sensing. Sens Actuator B-Chem 252:919–926.  https://doi.org/10.1016/j.snb.2017.06.096 CrossRefGoogle Scholar
  45. Hayat A, Cunningham J, Bulbul G, Andreescu S (2015) Evaluation of the oxidase like activity of nanoceria and its application in colorimetric assays. Anal Chim Acta 885:140–147.  https://doi.org/10.1016/j.aca.2015.04.052 CrossRefPubMedGoogle Scholar
  46. Hensley K, Robinson KA, Gabbita SP, Salsman S, Floyd RA (2000) Reactive oxygen species, cell signaling, and cell injury. Free Radic Biol Med 28(10):1456–1462.  https://doi.org/10.1016/s0891-5849(00)00252-5 CrossRefPubMedGoogle Scholar
  47. Hotamisligil GS (2006) Inflammation and metabolic disorders. Nature 444(7121):860–867.  https://doi.org/10.1038/nature05485 CrossRefPubMedGoogle Scholar
  48. Il Kim M, Shim J, Parab HJ, Shin SC, Lee J, Park HG (2012) A convenient alcohol sensor using one-pot nanocomposite entrapping alcohol oxidase and magnetic nanoparticles as peroxidase mimetics. J Nanosci Nanotechnol 12(7):5914–5919.  https://doi.org/10.1166/jnn.2012.6375 CrossRefPubMedGoogle Scholar
  49. Jiang J, Zou J, Zhu L, Huang L, Jiang H, Zhang Y (2011) Degradation of methylene blue with H2O2 activated by peroxidase-like Fe3O4 magnetic nanoparticles. J Nanosci Nanotechnol 11(6):4793–4799.  https://doi.org/10.1166/jnn.2011.4192 CrossRefPubMedGoogle Scholar
  50. Kim YS, Jurng J (2013) A simple colorimetric assay for the detection of metal ions based on the peroxidase-like activity of magnetic nanoparticles. Sens Actuator B-Chem 176:253–257.  https://doi.org/10.1016/j.snb.2012.10.052 CrossRefGoogle Scholar
  51. Kim MI, Shim J, Li T, Lee J, Park HG (2011) Fabrication of nanoporous nanocomposites entrapping Fe3O4 magnetic nanoparticles and oxidases for colorimetric biosensing. Chemistry 17(38):10700–10707.  https://doi.org/10.1002/chem.201101191 CrossRefPubMedGoogle Scholar
  52. Kim CK, Kim T, Choi IY, Soh M, Kim D, Kim YJ, Jang H, Yang HS, Kim JY, Park HK, Park SP, Park S, Yu T, Yoon BW, Lee SH, Hyeon T (2012a) Ceria nanoparticles that can protect against ischemic stroke. Angew Chem Int Ed Engl 51(44):11039–11043.  https://doi.org/10.1002/anie.201203780 CrossRefPubMedGoogle Scholar
  53. Kim MI, Shim J, Li T, Woo MA, Cho D, Lee J, Park HG (2012b) Colorimetric quantification of galactose using a nanostructured multi-catalyst system entrapping galactose oxidase and magnetic nanoparticles as peroxidase mimetics. Analyst 137(5):1137–1143.  https://doi.org/10.1039/c2an15889b CrossRefPubMedGoogle Scholar
  54. Kim MI, Ye Y, Woo MA, Lee J, Park HG (2014) A highly efficient colorimetric immunoassay using a nanocomposite entrapping magnetic and platinum nanoparticles in ordered mesoporous carbon. Adv Healthc Mater 3(1):36–41.  https://doi.org/10.1002/adhm.201300100 CrossRefPubMedGoogle Scholar
  55. Kim M, Kim MS, Kweon SH, Jeong S, Kang MH, Kim MI, Lee J, Doh J (2015) Simple and sensitive point-of-care bioassay system based on hierarchically structured enzyme-mimetic nanoparticles. Adv Healthc Mater 4(9):1311–1316.  https://doi.org/10.1002/adhm.201500173 CrossRefPubMedGoogle Scholar
  56. Kirkorian K, Ellis A, Twyman LJ (2012) Catalytic hyperbranched polymers as enzyme mimics; exploiting the principles of encapsulation and supramolecular chemistry. Chem Soc Rev 41(18):6138–6159.  https://doi.org/10.1039/c2cs35238a CrossRefPubMedGoogle Scholar
  57. Kotov NA (2010) Chemistry. Inorganic nanoparticles as protein mimics. Science 330(6001):188–189.  https://doi.org/10.1126/science.1190094 CrossRefPubMedGoogle Scholar
  58. Lenz A, Franklin GA, Cheadle WG (2007) Systemic inflammation after trauma. Injury 38(12):1336–1345.  https://doi.org/10.1016/j.injury.2007.10.003 CrossRefPubMedGoogle Scholar
  59. Li W, Chen B, Zhang H, Sun Y, Wang J, Zhang J, Fu Y (2015) BSA-stabilized Pt nanozyme for peroxidase mimetics and its application on colorimetric detection of mercury(II) ions. Biosens Bioelectron 66:251–258.  https://doi.org/10.1016/j.bios.2014.11.032 CrossRefPubMedGoogle Scholar
  60. Li J, Zhang C, Lin J, Yin J, Xu J, Chen Y (2018) Evaluating the bioavailability of heavy metals in natural-zeolite-amended aquatic sediments using thin-film diffusive gradients. Aquacult Fish 3(3):122–128.  https://doi.org/10.1016/j.aaf.2018.05.003 CrossRefGoogle Scholar
  61. Li S, Shang L, Xu B, Wang S, Gu K, Wu Q, Sun Y, Zhang Q, Yang H, Zhang F, Gu L, Zhang T, Liu H (2019) A nanozyme with photo-enhanced dual enzyme-like activities for deep pancreatic cancer therapy. Angew Chem Int Ed Engl. https://doi.org/10.1002/anie.201904751 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Liang M, Fan K, Zhou M, Duan D, Zheng J, Yang D, Feng J, Yan X (2014) H-ferritin-nanocaged doxorubicin nanoparticles specifically target and kill tumors with a single-dose injection. Proc Natl Acad Sci USA 111(41):14900–14905CrossRefGoogle Scholar
  63. Liang H, Lin F, Zhang Z, Liu B, Jiang S, Yuan Q, Liu J (2017) Multicopper laccase mimicking nanozymes with nucleotides as ligands. ACS Appl Mater Interfaces 9(2):1352–1360.  https://doi.org/10.1021/acsami.6b15124 CrossRefPubMedGoogle Scholar
  64. Lien CW, Chen YC, Chang HT, Huang CC (2013) Logical regulation of the enzyme-like activity of gold nanoparticles by using heavy metal ions. Nanoscale 5(17):8227–8234.  https://doi.org/10.1039/c3nr01836a CrossRefGoogle Scholar
  65. Liu J, Cao Z, Lu Y (2009) Functional nucleic acid sensors. Chem Rev 109(5):1948–1998.  https://doi.org/10.1021/cr030183i CrossRefPubMedPubMedCentralGoogle Scholar
  66. Liu M, Zhao H, Chen S, Yu H, Quan X (2012) Stimuli-responsive peroxidase mimicking at a smart graphene interface. Chem Commun (Camb) 48(56):7055–7057.  https://doi.org/10.1039/c2cc32406g CrossRefGoogle Scholar
  67. Liu X, Xu Y, He QH, He ZY, Xiong ZP (2013) Application of mimotope peptides of fumonisin b1 in Peptide ELISA. J Agric Food Chem 61(20):4765–4770.  https://doi.org/10.1021/jf400056p CrossRefPubMedGoogle Scholar
  68. Liu B, Han X, Liu J (2016) Iron oxide nanozyme catalyzed synthesis of fluorescent polydopamine for light-up Zn2+ detection. Nanoscale 8(28):13620–13626.  https://doi.org/10.1039/C6NR02584F CrossRefPubMedGoogle Scholar
  69. Lu W, Qin X, Liu S, Chang G, Zhang Y, Luo Y, Asiri AM, Al-Youbi AO, Sun X (2012) Economical, green synthesis of fluorescent carbon nanoparticles and their use as probes for sensitive and selective detection of mercury(II) ions. Anal Chem 84(12):5351–5357.  https://doi.org/10.1021/ac3007939 CrossRefPubMedGoogle Scholar
  70. Maji SK, Mandal AK, Nguyen KT, Borah P, Zhao Y (2015) Cancer cell detection and therapeutics using peroxidase-active nanohybrid of gold nanoparticle-loaded mesoporous silica-coated graphene. ACS Appl Mater Interfaces 7(18):9807–9816.  https://doi.org/10.1021/acsami.5b01758 CrossRefPubMedGoogle Scholar
  71. Mates JM, Perez-Gomez C, Nunez de Castro I (1999) Antioxidant enzymes and human diseases. Clin Biochem 32(8):595–603.  https://doi.org/10.1016/S0009-9120(99)00075-2 CrossRefPubMedGoogle Scholar
  72. Motherwell W, Bingham M, Six Y (2001) Recent progress in the design and synthesis of artificial enzymes. Tetrahedron 22(57):4663–4686.  https://doi.org/10.1016/S0040-4020(01)00288-5 CrossRefGoogle Scholar
  73. Mutharaian V, Kamalakannan R, Mayavel A, Makesh S, Kwon S, Kang K-S (2018) DNA polymorphisms and genetic relationship among populations of Acacia leucophloea using RAPD markers. J For Res 29(4):1013–1020.  https://doi.org/10.1007/s11676-017-0574-5 CrossRefGoogle Scholar
  74. Pratsinis A, Kelesidis GA, Zuercher S, Krumeich F, Bolisetty S, Mezzenga R, Leroux JC, Sotiriou GA (2017) Enzyme-mimetic antioxidant luminescent nanoparticles for highly sensitive hydrogen peroxide biosensing. ACS Nano 11(12):12210–12218.  https://doi.org/10.1021/acsnano.7b05518 CrossRefPubMedGoogle Scholar
  75. Pratt AJ, MacRae IJ (2009) The RNA-induced silencing complex: a versatile gene-silencing machine. J Biol Chem 284(27):17897–17901.  https://doi.org/10.1074/jbc.R900012200 CrossRefPubMedPubMedCentralGoogle Scholar
  76. Qiu H, Pu F, Ran X, Liu C, Ren J (2018) Nanozyme as artificial receptor with multiple readouts for pattern recognition. Anal Chem 90(20):11775–11779.  https://doi.org/10.1021/acs.analchem.8b03807 CrossRefPubMedGoogle Scholar
  77. Qu K, Shi P, Ren J, Qu X (2014) Nanocomposite incorporating V2O5 nanowires and gold nanoparticles for mimicking an enzyme cascade reaction and its application in the detection of biomolecules. Chemistry 20(24):7501–7506.  https://doi.org/10.1002/chem.201400309 CrossRefPubMedGoogle Scholar
  78. Quick KL, Ali SS, Arch R, Xiong C, Wozniak D, Dugan LL (2008) A carboxyfullerene SOD mimetic improves cognition and extends the lifespan of mice. Neurobiol Aging 29(1):117–128.  https://doi.org/10.1016/j.neurobiolaging.2006.09.014 CrossRefPubMedGoogle Scholar
  79. Rhee SG (1999) Redox signaling: hydrogen peroxide as intracellular messenger. Exp Mol Med 31(2):53–59.  https://doi.org/10.1038/emm.1999.9 CrossRefGoogle Scholar
  80. Sasmal PK, Carregal-Romero S, Han AA, Streu CN, Lin Z, Namikawa K, Elliott SL, Koster RW, Parak WJ, Meggers E (2012) Catalytic azide reduction in biological environments. Chembiochem 13(8):1116–1120.  https://doi.org/10.1002/cbic.201100719 CrossRefPubMedGoogle Scholar
  81. Sharma R, Tepas JJ, Hudak ML, Mollitt DL, Wludyka PS, Teng RJ, Premachandra BR (2007) Neonatal gut barrier and multiple organ failure: role of endotoxin and proinflammatory cytokines in sepsis and necrotizing enterocolitis. J Pediatr Surg 42(3):454–461.  https://doi.org/10.1016/j.jpedsurg.2006.10.038 CrossRefPubMedGoogle Scholar
  82. Sharma TK, Ramanathan R, Weerathunge P, Mohammadtaheri M, Daima HK, Shukla R, Bansal V (2014) Aptamer-mediated 'turn-off/turn-on' nanozyme activity of gold nanoparticles for kanamycin detection. Chem Commun (Camb) 50(100):15856–15859.  https://doi.org/10.1039/c4cc07275h CrossRefGoogle Scholar
  83. Song Y, Qu K, Xu C, Ren J, Qu X (2010a) Visual and quantitative detection of copper ions using magnetic silica nanoparticles clicked on multiwalled carbon nanotubes. Chem Commun (Camb) 46(35):6572–6574.  https://doi.org/10.1039/c0cc01593h CrossRefGoogle Scholar
  84. Song Y, Wang X, Zhao C, Qu K, Ren J, Qu X (2010b) Label-free colorimetric detection of single nucleotide polymorphism by using single-walled carbon nanotube intrinsic peroxidase-like activity. Chemistry 16(12):3617–3621.  https://doi.org/10.1002/chem.200902643 CrossRefPubMedGoogle Scholar
  85. Song Y, Xia X, Wu X, Wang P, Qin L (2014) Integration of platinum nanoparticles with a volumetric bar-chart chip for biomarker assays. Angew Chem Int Ed Engl 53(46):12451–12455.  https://doi.org/10.1002/anie.201404349 CrossRefPubMedPubMedCentralGoogle Scholar
  86. Streu C, Meggers E (2006) Ruthenium-induced allylcarbamate cleavage in living cells. Angew Chem Int Ed Engl 45(34):5645–5648.  https://doi.org/10.1002/anie.200601752 CrossRefPubMedGoogle Scholar
  87. Su L, Yu X, Qin W, Dong W, Wu C, Zhang Y, Mao G, Feng S (2017) One-step analysis of glucose and acetylcholine in water based on the intrinsic peroxidase-like activity of Ni/Co LDHs microspheres. J Mater Chem B 5(1):116–122.  https://doi.org/10.1039/C6TB02273A CrossRefGoogle Scholar
  88. Taghdisi SM, Danesh NM, Lavaee P, Emrani AS, Ramezani M, Abnous K (2015) A novel colorimetric triple-helix molecular switch aptasensor based on peroxidase-like activity of gold nanoparticles for ultrasensitive detection of lead(II). Rsc Adv 5(54):43508–43514.  https://doi.org/10.1039/C5RA06326D CrossRefGoogle Scholar
  89. Tang Z, Wu H, Zhang Y, Li Z, Lin Y (2011) Enzyme-mimic activity of ferric nano-core residing in ferritin and its biosensing applications. Anal Chem 83(22):8611–8616.  https://doi.org/10.1021/ac202049q CrossRefGoogle Scholar
  90. Tao Y, Lin Y, Huang Z, Ren J, Qu X (2013) Incorporating graphene oxide and gold nanoclusters: a synergistic catalyst with surprisingly high peroxidase-like activity over a broad pH range and its application for cancer cell detection. Adv Mater 25(18):2594–2599.  https://doi.org/10.1002/adma.201204419 CrossRefPubMedGoogle Scholar
  91. Thiramanas R, Jangpatarapongsa K, Tangboriboonrat P, Polpanich D (2013) Detection of Vibrio cholerae using the intrinsic catalytic activity of a magnetic polymeric nanoparticle. Anal Chem 85(12):5996–6002.  https://doi.org/10.1021/ac400820d CrossRefPubMedGoogle Scholar
  92. Thompson DF (1981) Management of thallium poisoning. Clin Toxicol 18(8):979–990.  https://doi.org/10.3109/15563658108990328 CrossRefPubMedGoogle Scholar
  93. Tian Z, Li J, Zhang Z, Gao W, Zhou X, Qu Y (2015) Highly sensitive and robust peroxidase-like activity of porous nanorods of ceria and their application for breast cancer detection. Biomaterials 59:116–124.  https://doi.org/10.1016/j.biomaterials.2015.04.039 CrossRefPubMedGoogle Scholar
  94. Tonga GY, Jeong Y, Duncan B, Mizuhara T, Mout R, Das R, Kim ST, Yeh YC, Yan B (2015) Supramolecular regulation of bioorthogonal catalysis in cells using nanoparticle-embedded transition metal catalysts. Nat Chem 7(7):597–603.  https://doi.org/10.1038/nchem.2284 CrossRefPubMedPubMedCentralGoogle Scholar
  95. Vaupel P, Harrison L (2004) Tumor hypoxia: causative factors, compensatory mechanisms, and cellular response. Oncologist 5(9 Suppl):4–9.  https://doi.org/10.1634/theoncologist.9-90005-4 CrossRefGoogle Scholar
  96. Vickery K, Pajkos A, Cossart Y (2004) Removal of biofilm from endoscopes: evaluation of detergent efficiency. Am J Infect Control 32(3):170–176.  https://doi.org/10.1016/j.ajic.2003.10.009 CrossRefPubMedGoogle Scholar
  97. Volker T, Dempwolff F, Graumann PL, Meggers E (2014) Progress towards bioorthogonal catalysis with organometallic compounds. Angew Chem Int Ed Engl 53(39):10536–10540.  https://doi.org/10.1002/anie.201404547 CrossRefPubMedGoogle Scholar
  98. Wang Z, Liu H, Yang SH, Wang T, Liu C, Cao YC (2012) Nanoparticle-based artificial RNA silencing machinery for antiviral therapy. Proc Natl Acad Sci USA 109(31):12387–12392.  https://doi.org/10.1073/pnas.1207766109 CrossRefPubMedGoogle Scholar
  99. Wang GL, Jin LY, Wu XM, Dong YM, Li ZJ (2015) Label-free colorimetric sensor for mercury(II) and DNA on the basis of mercury(II) switched-on the oxidase-mimicking activity of silver nanoclusters. Anal Chim Acta 871:1–8.  https://doi.org/10.1016/j.aca.2015.02.027 CrossRefPubMedGoogle Scholar
  100. Wang X, Hu Y, Wei H (2016) Nanozymes in bionanotechnology: from sensing to therapeutics and beyond. Inorg Chem Front 3(1):41–60.  https://doi.org/10.1039/C5QI00240K CrossRefGoogle Scholar
  101. Wang Q, Zhang X, Huang L, Zhang Z, Dong S (2017a) GOx@ZIF-8(NiPd) nanoflower: an artificial enzyme system for tandem catalysis. Angew Chem Int Ed 56(50):16082–16085.  https://doi.org/10.1002/anie.201710418 CrossRefGoogle Scholar
  102. Wang Q, Zhang X, Huang L, Zhang Z, Dong S (2017b) One-pot synthesis of Fe3O4 nanoparticle loaded 3D porous graphene nanocomposites with enhanced nanozyme activity for glucose detection. ACS Appl Mater Interfaces 9(8):7465–7471.  https://doi.org/10.1021/acsami.6b16034 CrossRefPubMedGoogle Scholar
  103. Wang Z, Zhang Y, Ju E, Liu Z, Cao F, Chen Z, Ren J, Qu X (2018) Biomimetic nanoflowers by self-assembly of nanozymes to induce intracellular oxidative damage against hypoxic tumors. Nat Commun 9(1):3334.  https://doi.org/10.1038/s41467-018-05798-x CrossRefPubMedPubMedCentralGoogle Scholar
  104. Weerathunge P, Ramanathan R, Shukla R, Sharma TK, Bansal V (2014) Aptamer-controlled reversible inhibition of gold nanozyme activity for pesticide sensing. Anal Chem 86(24):11937–11941.  https://doi.org/10.1021/ac5028726 CrossRefPubMedGoogle Scholar
  105. Wei H, Wang E (2008) Fe3O4 magnetic nanoparticles as peroxidase mimetics and their applications in H2O2 and glucose detection. Anal Chem 80(6):2250–2254.  https://doi.org/10.1021/ac702203f CrossRefPubMedGoogle Scholar
  106. Wei H, Wang E (2013) Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes. Chem Soc Rev 42(14):6060–6093.  https://doi.org/10.1039/c3cs35486e CrossRefGoogle Scholar
  107. Weiss JT, Dawson JC, Macleod KG, Rybski W, Fraser C, Torres-Sanchez C, Patton EE, Bradley M, Carragher NO, Unciti-Broceta A (2014) Extracellular palladium-catalysed dealkylation of 5-fluoro-1-propargyl-uracil as a bioorthogonally activated prodrug approach. Nat Commun 5:3277.  https://doi.org/10.1038/ncomms4277 CrossRefPubMedPubMedCentralGoogle Scholar
  108. Wu J, Wang X, Wang Q, Lou Z, Li S, Zhu Y, Qin L, Wei H (2019) Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes (II). Chem Soc Rev 48(4):1004–1076.  https://doi.org/10.1039/C8CS00457A CrossRefGoogle Scholar
  109. Xu W, Xue S, Yi H, Jing P, Chai Y, Yuan R (2015) A sensitive electrochemical aptasensor based on the co-catalysis of hemin/G-quadruplex, platinum nanoparticles and flower-like MnO2 nanosphere functionalized multi-walled carbon nanotubes. Chem Commun (Camb) 51(8):1472–1474.  https://doi.org/10.1039/c4cc08860c CrossRefGoogle Scholar
  110. Yan-Yan H, You-Hui L, Fang P, Jin-Song R, Xiao-Gang Q (2018) The current progress of nanozymes in disease treatments. Prog Biochem Biophys 45(2):256–267.  https://doi.org/10.16476/j.pibb.2017.0464 CrossRefGoogle Scholar
  111. Zhang J, Zhuang J, Gao L, Zhang Y, Gu N, Feng J, Yang D, Zhu J, Yan X (2008a) Decomposing phenol by the hidden talent of ferromagnetic nanoparticles. Chemosphere 73(9):1524–1528.  https://doi.org/10.1016/j.chemosphere.2008.05.050 CrossRefPubMedGoogle Scholar
  112. Zhang L, Zhai Y, Gao N, Wen D, Dong S (2008b) Sensing H2O2 with layer-by-layer assembled Fe3O4–PDDA nanocomposite film. Electrochem Commun 10(10):1524–1526.  https://doi.org/10.1016/j.elecom.2008.05.022 CrossRefGoogle Scholar
  113. Zhang L, Han L, Hu P, Wang L, Dong S (2013) TiO(2) nanotube arrays: intrinsic peroxidase mimetics. Chem Commun (Camb) 49(89):10480–10482.  https://doi.org/10.1039/c3cc46163g CrossRefGoogle Scholar
  114. Zhang W, Hu S, Yin JJ, He W, Lu W, Ma M, Gu N, Zhang Y (2016) Prussian blue nanoparticles as multienzyme mimetics and reactive oxygen species scavengers. J Am Chem Soc 138(18):5860–5865.  https://doi.org/10.1021/jacs.5b12070 CrossRefPubMedGoogle Scholar
  115. Zhang Y, Wang F, Liu C, Wang Z, Kang L, Huang Y, Dong K, Ren J (2018) Nanozyme decorated metal-organic frameworks for enhanced photodynamic therapy. ACS Nano 12(1):651–661.  https://doi.org/10.1021/acsnano.7b07746 CrossRefPubMedGoogle Scholar
  116. Zhang X, Huang R, Gopalakrishnan S, Cao-Milán R, Rotello VM (2019) Bioorthogonal nanozymes: progress towards therapeutic applications. Trends Chem 1(1):90–98.  https://doi.org/10.1016/j.trechm.2019.02.006 CrossRefGoogle Scholar
  117. Zheng C, Zheng A-X, Liu B, Zhang X-L, He Y, Li J, Yang H-H, Chen G (2014) One-pot synthesized DNA-templated Ag/Pt bimetallic nanoclusters as peroxidase mimics for colorimetric detection of thrombin. Chem Commun 50(86):13103–13106.  https://doi.org/10.1039/C4CC05339G CrossRefGoogle Scholar
  118. Zhu Z, Guan Z, Jia S, Lei Z, Lin S, Zhang H, Ma Y, Tian ZQ, Yang CJ (2014) Au@Pt nanoparticle encapsulated target-responsive hydrogel with volumetric bar-chart chip readout for quantitative point-of-care testing. Angew Chem Int Ed Engl 53(46):12503–12507.  https://doi.org/10.1002/anie.201405995 CrossRefPubMedGoogle Scholar
  119. Ziech D, Franco R, Pappa A, Panayiotidis MI (2011) Reactive oxygen species (ROS)-induced genetic and epigenetic alterations in human carcinogenesis. Mutat Res 711(1–2):167–173.  https://doi.org/10.1016/j.mrfmmm.2011.02.015 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature B.V. 2020

Authors and Affiliations

  1. 1.Department of Bioinformatics & BiotechnologyGovernment College University FaisalabadFaisalabadPakistan
  2. 2.Department of MicrobiologyAbdul Wali Khan University MardanMardanPakistan
  3. 3.School of Life Science and Food EngineeringHuaiyin Institute of TechnologyHuai’anChina
  4. 4.College of Chemistry and Environmental EngineeringShenzhen UniversityShenzhenChina
  5. 5.Department of Pharmaceutics, College of PharmacyKing Saud UniversityRiyadhSaudi Arabia
  6. 6.Department of MicrobiologyGovernment College University FaisalabadFaisalabadPakistan

Personalised recommendations