Advertisement

Biotechnology Letters

, Volume 42, Issue 3, pp 437–443 | Cite as

Reutilization of residual glycerin for the produce β-carotene by Rhodotorula minuta

  • Sabrina Roberta Santana da Silva
  • Thayza Christina Montenegro Stamford
  • Wendell Wagner Campos Albuquerque
  • Esteban Espinosa Vidal
  • Tânia Lúcia Montenegro StamfordEmail author
Original Research Paper
  • 56 Downloads

Abstract

This study aimed to evaluate the production of carotenoid pigments by Rhodotorula spp. in submerged fermentation, using residual glycerin from biodiesel production as a carbon source. Chromatographic analysis by HPLC showed that the residual glycerin used as substrate was 57.88% composed of glycerol. The best growth conditions were found in the fermentation medium composed of residual glycerin at a concentration of 30 g/L and pH 9. From all the Rhodotorula strains tested, R. minuta URM6693 was selected because of their performance and adaptation in all culture media assayed. The maximum volumetric production of carotenoids was found at 48 h (equivalent to 17.20 mg/L, for the R. minuta). The production of β-carotene since the first 24 h of fermentation reach a final concentration of 1.021 mg/L. The yeast Rhodotorula minuta proved its capability to efficiently convert the substrate (mainly at the concentration of 50 g/L), obtaining products of biotechnological interest.

Keywords

Agroindustrial waste Glycerine Yeasts β-carotene 

Notes

Acknowledgements

The authors thank Fundação de Ciência e Tecnologia do Estado de Pernambuco (FACEPE), Centro de Tecnologias Estratégicas do Nordeste (CETENE), Departamento de Antibióticos, Departamento de Nutrição of the Universidade Federal de Pernambuco (UFPE).

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interesting regarding the publication of this paper.

References

  1. Ananda N, Vadlani PV (2011) Substrates influence stimulatory effect of mevalonic acid on carotenoid production in red yeasts. Cereal Chem 88:310–314.  https://doi.org/10.1094/CCHEM-10-10-0149 CrossRefGoogle Scholar
  2. Braunwald T, Schwemmlein L, Graeff-Hönninger S et al (2013) Effect of different C/N ratios on carotenoid and lipid production by Rhodotorula glutinis. Appl Microbiol Biotechnol 97:6581–6588.  https://doi.org/10.1007/s00253-013-5005-8 CrossRefPubMedGoogle Scholar
  3. Chen CW, Hsu SH, Lin MT, Hsu YH (2015) Mass production of C50 carotenoids by Haloferax mediterranei in using extruded rice bran and starch under optimal conductivity of brined medium. Bioprocess Biosyst Eng 38(12):2361–2367.  https://doi.org/10.1007/s00449-015-1471-y CrossRefPubMedGoogle Scholar
  4. Cheng YT, Yang CF (2015) Using strain Rhodotorula mucilaginosa to produce carotenoids using food wastes. J Taiwan Inst Chem Eng 61:270–275CrossRefGoogle Scholar
  5. Cutzu R, Coi A, Rosso F et al (2013) From crude glycerol to carotenoids by using a Rhodotorula glutinis mutant. World J Microbiol Biotechnol 29:1009–1017.  https://doi.org/10.1007/s11274-013-1264-x CrossRefPubMedGoogle Scholar
  6. de Paz E, Martín Á, Estrella A et al (2012) Formulation of β-carotene by precipitation from pressurized ethyl acetate-on-water emulsions for application as natural colorant. Food Hydrocoll 26:17–27.  https://doi.org/10.1016/j.foodhyd.2011.02.031 CrossRefGoogle Scholar
  7. Gómez-García M, Ochoa-Alejo N (2013) Biochemistry and molecular biology of carotenoid biosynthesis in chili peppers (Capsicum spp.). Int J Mol Sci 14(9), 19025–19053.CrossRefGoogle Scholar
  8. El-Banna AA, El-Razek AMA, El-Mahdy AR (2012) Some factors affecting the production of carotenoids by Rhodotorula glutinis var. glutinis. Food Nutr Sci 3(01), 64–71.  https://doi.org/10.4236/fns.2012.31011 CrossRefGoogle Scholar
  9. Gammone M, Riccioni G, D’Orazio N (2015) Marine carotenoids against oxidative stress: effects on human health. Mar Drugs 13:6226–6246.  https://doi.org/10.3390/md13106226 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Gautam S, Platel K, Srinivasan K (2010) Influence of β-carotene-rich vegetables on the bioaccessibility of zinc and iron from food grains. Food Chem 122:668–672.  https://doi.org/10.1016/j.foodchem.2010.03.028 CrossRefGoogle Scholar
  11. Hernández-Almanza A, Montañez-Sáenz J, Martínez-Ávila C et al (2014) Carotenoid production by Rhodotorula glutinis YB-252 in solid-state fermentation. Food Biosci 7:31–36.  https://doi.org/10.1016/j.fbio.2014.04.001 CrossRefGoogle Scholar
  12. Maldonade IR, Scamparini ARP, Rodriguez-Amaya DB (2007) Selection and characterization of carotenoid-producing yeasts from Campinas region, Brazil. Brazilian J Microbiol 38:65–70.  https://doi.org/10.1590/S1517-83822007000100014 CrossRefGoogle Scholar
  13. Marova I, Carnecka M, Halienova A et al (2012) Use of several waste substrates for carotenoid-rich yeast biomass production. J Environ Manag.  https://doi.org/10.1016/j.jenvman.2011.06.018 CrossRefGoogle Scholar
  14. Mata-Gómez LC, Montañez JC, Méndez-Zavala A, Aguilar CN (2014) Biotechnological production of carotenoids by yeasts: an overview. Microb Cell Factor 13:12.  https://doi.org/10.1186/1475-2859-13-12 CrossRefGoogle Scholar
  15. Moliné M, Libkind D, Van Broock M (2012) Production of torularhodin, torulene, and β-carotene by Rhodotorula yeasts. Methods Mol Biol 898:275–283.  https://doi.org/10.1007/978-1-61779-918-1_19 CrossRefPubMedGoogle Scholar
  16. Mota CJA, Pestana CFM (2011) Co-produtos da Produção de biodiesel Co-products from biodiesel production. Rev Virtual Quim 3:416–425.  https://doi.org/10.5935/1984-6835.20110045 CrossRefGoogle Scholar
  17. Mota CJA, Silva CXA, Gonçalves VLC (2009) Gliceroquímica: novos produtos e processos a partir da glicerina de produção de biodiesel. Quim Nova 32:639–648CrossRefGoogle Scholar
  18. Ribeiro BD, Barreto DW, Coelho MAZ (2011) Technological aspects of ?-carotene production. Food Bioprocess Technol 4:693–701.  https://doi.org/10.1007/s11947-011-0545-3 CrossRefGoogle Scholar
  19. Rivera SM, Canela-Garayoa R (2012) Analytical tools for the analysis of carotenoids in diverse materials. J Chromatogr A 1224:1–10CrossRefGoogle Scholar
  20. Saenge C, Cheirsilp B, Suksaroge TT, Bourtoom T (2011) Efficient concomitant production of lipids and carotenoids by oleaginous red yeast Rhodotorula glutinis cultured in palm oil mill effluent and application of lipids for biodiesel production. Biotechnol Bioprocess Eng 16:23–33.  https://doi.org/10.1007/s12257-010-0083-2 CrossRefGoogle Scholar
  21. Schneider T, Graeff-Hönninger S, French WT et al (2013) Lipid and carotenoid production by oleaginous red yeast Rhodotorula glutinis cultivated on brewery effluents. Energy 61:34–43.  https://doi.org/10.1016/j.energy.2012.12.026 CrossRefGoogle Scholar
  22. Tanaka T, Shnimizu M, Moriwaki H (2012) Cancer chemoprevention by carotenoids. Molecules 17:3202–3242CrossRefGoogle Scholar
  23. Uenojo M, Pastore GM (2010) Β-carotene biotransformation to obtain aroma compounds. Ciência e Tecnol Aliment 30:822–827.  https://doi.org/10.1590/S0101-20612010000300039 CrossRefGoogle Scholar
  24. Valduga E, Tatsch PO, Tiggemann L et al (2009) Produção de carotenoides: microrganismos como fonte de pigmentos naturais. Quim Nova 32:2429–2436.  https://doi.org/10.1590/S0100-40422009000900036 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2020

Authors and Affiliations

  • Sabrina Roberta Santana da Silva
    • 1
  • Thayza Christina Montenegro Stamford
    • 2
  • Wendell Wagner Campos Albuquerque
    • 4
  • Esteban Espinosa Vidal
    • 5
  • Tânia Lúcia Montenegro Stamford
    • 3
    Email author
  1. 1.Departamento de Antibióticos, Centro de BiociênciasUniversidade Federal de PernambucoRecifeBrasil
  2. 2.Departamento de Medicina Tropical, Centro de Ciências MédicasUniversidade Federal de PernambucoRecifeBrasil
  3. 3.Departamento de Nutrição, Centro de Ciências da SaúdeCidade Universitária, Universidade Federal de PernambucoRecifeBrasil
  4. 4.Departamento de Morfologia E Fisiologia AnimalUniversidade Federal Rural de PernambucoRecifeBrasil
  5. 5.Centro de Tecnologias Estratégicas Do NordesteMinistério da Ciência, Tecnologia E InovaçãoRecifeBrasil

Personalised recommendations