Advertisement

Insights into the thermostability and product specificity of a maltooligosaccharide-forming amylase from Bacillus stearothermophilus STB04

  • Xiaofang Xie
  • Xiaofeng Ban
  • Zhengbiao Gu
  • Caiming Li
  • Yan Hong
  • Li Cheng
  • Zhaofeng LiEmail author
Original Research Paper
  • 47 Downloads

Abstract

Objectives

Analyze the thermostability, mode of action, and product specificity of a maltooligosaccharide-forming amylase from Bacillus stearothermophilus STB04 (Bst-MFA) from the biochemical and structural point of view.

Results

Using three-dimensional co-crystal structure of Bst-MFA with acarbose as a guide, experiments were performed to analyze the thermostability, mode of action and product specificity of Bst-MFA. The results showed that the Ca2+–Ca2+–Ca2+ metal triad of Bst-MFA is responsible for its high thermostability. Multiple substrate binding modes, rather than one productive binding mode determined by non-reducing end recognition, are in accordance with an endo-type mode of action. Significant interactions between subsites − 5 and − 6 and glucosyl residues at the non-reducing end explain the maltopentaose (G5) and maltohexaose (G6) specificity of Bst-MFA.

Conclusions

Bst-MFA is a thermostable enzyme that preferentially produces G5 and G6, with an endo-type mode. The understanding of structure–function relationships provides the foundation for future efforts to the modification of Bst-MFA.

Keywords

Action mode Maltooligosaccharide-forming amylase Product specificity Structure Thermostability 

Notes

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 31722040, 31571882), the China Postdoctoral Science Foundation (No. 2018M632233), the Natural Science Foundation of Jiangsu Province (BK20180606), and the Jiangsu province “Collaborative Innovation Center of Food Safety and Quality Control” industry development program.

Supporting information

Experimental procedures, including construction of mutant and the effect of EDTA on the thermostability of Bst-MFA; Supplementary Table 1—optimal temperature of Bst-MFA and other MFAses; Supplementary Fig. 1—effect of EDTA on the thermostability of Bst-MFA; Supplementary Fig. 2—thermostability of mutant ΔIG181-182 at 80 °C.

Compliance with ethical standards

Conflict of interest

The authors declare no competing financial interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Supplementary material

10529_2019_2780_MOESM1_ESM.pdf (203 kb)
Supplementary material 1 (PDF 202 kb)

References

  1. Ali MB, Mhiri S, Mezghani M, Bejar S (2001) Purification and sequence analysis of the atypical maltohexaose-forming α-amylase of the Bacillus stearothermophilus US100. Enzyme Microb Technol 28:537–542CrossRefGoogle Scholar
  2. Ali MB, Khemakhem B, Robert X, Haser R, Bejar S (2006) Thermostability enhancement and change in starch hydrolysis profile of the maltohexaose-forming amylase of Bacillus stearothermophilus US100 strain. Biochem J 394:51–56CrossRefGoogle Scholar
  3. Bae W, Lee SH, Yoo SH, Lee S (2014) Utilization of a maltotetraose-producing amylase as a whole wheat bread improver: dough rheology and baking performance. J Food Sci 79:1535–1540CrossRefGoogle Scholar
  4. Bijttebier A, Goesaert H, Delcour JA (2007) Temperature impacts the multiple attack action of amylases. Biomacromolecules 8:765–772CrossRefGoogle Scholar
  5. Davies GJ, Brzozowski AM, Dauter Z, Rasmussen MD, Borchert TV, Wilson KS (2005) Structure of a Bacillus halmapalus family 13 α-amylase, BHA, in complex with an acarbose-derived nonasaccharide at 2.1 Å resolution. Acta Crystallogr D 61:190–193CrossRefGoogle Scholar
  6. Declerck N, Machius M, Wiegand G, Huber R, Gaillardin C (2000) Probing structural determinants specifying high thermostability in Bacillus licheniformis α-amylase. J Mol Biol 301:1041–1057CrossRefGoogle Scholar
  7. Ghollasi M, Khajeh K, Naderi-Manesh H, Ghasemi A (2010) Engineering of a Bacillus α-amylase with improved thermostability and calcium independency. Appl Biochem Biotechnol 162:444–459CrossRefGoogle Scholar
  8. Kanai R, Haga K, Akiba T, Yamane K, Harata K (2004) Biochemical and crystallographic analyses of maltohexaose-producing amylase from Alkalophilic Bacillus sp. 707. Biochemistry 43:14047–14056CrossRefGoogle Scholar
  9. Kandra L, Gyémánt G, Remenyik J, Hovánszki G, Lipták A (2002) Action pattern and subsite mapping of Bacillus licheniformis α-amylase (BLA) with modified maltooligosaccharide substrates. FEBS Lett 518:79–82CrossRefGoogle Scholar
  10. Khemakhem B, Ben Ali M, Aghajari N, Juy M, Haser R, Bejar S (2009) The importance of an extra loop in the B-domain of an α-amylase from B. stearothermophilus US100. Biochem Biophys Res Commun 385:78–83CrossRefGoogle Scholar
  11. Kong H, Zou Y, Gu Z, Li Z, Jiang Z, Cheng L, Hong Y, Li C (2018) Liquefaction concentration impacts the fine structure of maltodextrin. Ind Crops Prod 123:687–697CrossRefGoogle Scholar
  12. Machius M, Declerck N, Huber R, Wiegand G (1998) Activation of Bacillus licheniformis α-amylase through a disorder → order transition of the substrate-binding site mediated by a calcium-sodium-calcium metal triad. Structure 6:281–292CrossRefGoogle Scholar
  13. Morishita Y, Hasegawa K, Matsuura Y, Katsube Y, Kubota M, Sakai S (1997) Crystal structure of a maltotetraose-forming exo-amylase from Pseudomonas stutzeri. J Mol Biol 267:661–672CrossRefGoogle Scholar
  14. Pan S, Ding N, Ren J, Gu Z, Li C, Hong Y, Cheng L, Holler TP, Li Z (2017) Maltooligosaccharide-forming amylase: characteristics, preparation, and application. Biotechnol Adv 35:619–632CrossRefGoogle Scholar
  15. Pan S, Gu Z, Ding N, Zhang Z, Chen D, Li C, Hong Y, Cheng L, Li Z (2019) Calcium and sodium ions synergistically enhance the thermostability of a maltooligosaccharide-forming amylase from Bacillus stearothermophilus STB04. Food Chem 283:170–176CrossRefGoogle Scholar
  16. Rogers JC (1985) Conserved amino acid sequence domains in alpha-amylases from plants, mammals, and bacteria. Biochem Biophys Res Commun 128:470–476CrossRefGoogle Scholar
  17. Suominen I, Meyer P, Tilgmann C, Glumoff T, Glumoff V, Käpylä J, Mäntsälä P (1995) Effects of signal peptide mutations on processing of Bacillus stearothermophilus α-amylase in Escherichia coli. Microbiology 141:649–654CrossRefGoogle Scholar
  18. Suvd D, Fujimoto Z, Takase K, Matsumura M, Mizuno H (2001) Crystal structure of Bacillus stearothermophilus α-amylase: possible factors determining the thermostability. J Biochem 129:461–468CrossRefGoogle Scholar
  19. Suzuki Y, Ito N, Yuuki T, Yamagata H, Udaka S (1989) Amino acid residues stabilizing a Bacillus α-amylase against irreversible thermoinactivation. J Biol Chem 264:18933–18938PubMedGoogle Scholar
  20. Vihinen M, Ollikka P, Niskanen J, Meyer P, Suominen I, Karp M, Holm L, Knowles J, Mäntsälä P (1990) Site-directed mutagenesis of a thermostable α-amylase from Bacillus stearothermophilus: putative role of three conserved residues. J Biochem 107:267–272CrossRefGoogle Scholar
  21. Xie X, Li Y, Ban X, Zhang Z, Gu Z, Li C, Hong Y, Cheng L, Jin T, Li Z (2019) Crystal structure of a maltooligosaccharide-forming amylase from Bacillus stearothermophilus STB04. Int J Biol Macromol 138:394–402CrossRefGoogle Scholar
  22. Yadav JK (2012) A differential behavior of α-amylase, in terms of catalytic activity and thermal stability, in response to higher concentration CaCl2. Int J Biol Macromol 51:146–152CrossRefGoogle Scholar
  23. Yoshioka Y, Hasegawa K, Matsuura Y, Katsube Y, Kubota M (1997) Crystal structures of a mutant maltotetraose-forming exo-amylase cocrystallized with maltopentaose. J Mol Biol 271:619–628CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Food Science and TechnologyJiangnan UniversityWuxiPeople’s Republic of China
  2. 2.School of Food Science and TechnologyJiangnan UniversityWuxiPeople’s Republic of China
  3. 3.Collaborative Innovation Center of Food Safety and Quality ControlJiangnan UniversityWuxiPeople’s Republic of China

Personalised recommendations