MiRNA-125a-5p attenuates blood–spinal cord barrier permeability under hypoxia in vitro

  • Jian Wang
  • Zhikui Nie
  • Huanhua Zhao
  • Kai Gao
  • Yang CaoEmail author
Original Research Paper


Disruption of the blood–spinal cord barrier (BSCB) results in secondary injury and apoptosis of neurons, leading to permanent neurological dysfunction after spinal cord injury. In this study, we evaluate the role of miRNA-125a-5p in the BSCB under hypoxia. The miRNA-125a-5p mimics group showed lower horseradish peroxidase (HRP) permeability and endothelial cell death rates compared with the transfection control group. By contrast, the miRNA-125a-5p inhibitor group demonstrated higher HRP permeability and endothelial cell death rates than the transfection control group. The expressions of ZO-1, occludin, VE-cadherin and their mRNA significantly increased in miRNA-125a-5p-overexpressing cells. By contrast, a remarkable reduction in ZO-1, occludin, and VE-cadherin expression and their mRNA were observed in miRNA-125a-5p-inhibited cells. MiRNA-125a-5p appears to reduce the permeability of the BSCB by up regulating the expression of ZO-1, occludin, and VE-cadherin and their mRNA, and against hypoxia-induced apoptosis of spinal cord microvascular endothelial cells. Taken together, our results clearly indicate that miRNA-125a-5p plays an important role in protecting the functions of the BSCB under hypoxia.


MiRNA-125a-5p Blood–spinal cord barrier (BSCB) Spinal cord injury (SCI) Permeability 



This work is supported by National Natural Science Foundation of China (Grant Nos. 81471853, 81501659 and 81801906) and Natural Science Foundation of Shandong Province of China (Grant No. ZR2018PH024).


  1. Alles J, Fehlmann T, Fischer U, Backes C, Galata V, Minet M et al (2019) An estimate of the total number of true human miRNAs. Nucleic Acids Res 47:3353–3364PubMedPubMedCentralCrossRefGoogle Scholar
  2. Alvarez JI et al (2011) The Hedgehog pathway promotes blood-brain barrier integrity and CNS immune quiescence. Science (New York, NY) 334:1727–1731CrossRefGoogle Scholar
  3. Bartanusz V, Jezova D, Alajajian B, Digicaylioglu M (2011) The blood-spinal cord barrier: morphology and clinical implications. Ann Neurol 70:194–206PubMedCrossRefGoogle Scholar
  4. Bonauer A, Boon RA, Dimmeler S (2010) Vascular microRNAs. Curr Drug Targets 11:943–949PubMedCrossRefGoogle Scholar
  5. Chen T, Huang Z, Wang L, Wang Y, Wu F, Meng S, Wang C (2009) MicroRNA-125a-5p partly regulates the inflammatory response, lipid uptake, and ORP9 expression in oxLDL-stimulated monocyte/macrophages. Cardiovasc Res 83:131–139PubMedCrossRefGoogle Scholar
  6. D'Orleans-Juste P, Akide Ndunge OB, Desbiens L, Tanowitz HB, Desruisseaux MS (2019) Endothelins in inflammatory neurological diseases. Pharmacol Ther 194:145–160PubMedCrossRefGoogle Scholar
  7. Echeverry S, Shi XQ, Rivest S, Zhang J (2011) Peripheral nerve injury alters blood-spinal cord barrier functional and molecular integrity through a selective inflammatory pathway. J Neurosci 31:10819–10828PubMedPubMedCentralCrossRefGoogle Scholar
  8. Figley SA, Khosravi R, Legasto JM, Tseng YF, Fehlings MG (2014) Characterization of vascular disruption and blood-spinal cord barrier permeability following traumatic spinal cord injury. J Neurotrauma 31:541–552PubMedPubMedCentralCrossRefGoogle Scholar
  9. Gu Y et al (2015) Different astrocytic activation between adult Gekko japonicus and rats during wound healing in vitro. PLoS ONE 10:e0127663PubMedPubMedCentralCrossRefGoogle Scholar
  10. Hsieh TH et al (2015) HDAC inhibitors target HDAC5, upregulate microRNA-125a-5p, and induce apoptosis in breast cancer cells. Mol Therapy 23:656–666CrossRefGoogle Scholar
  11. Huber JD, Egleton RD, Davis TP (2001) Molecular physiology and pathophysiology of tight junctions in the blood-brain barrier. Trends Neurosci 24:719–725PubMedCrossRefGoogle Scholar
  12. Lee JY, Choi HY, Na WH, Ju BG, Yune TY (2014) Ghrelin inhibits BSCB disruption/hemorrhage by attenuating MMP-9 and SUR1/TrpM4 expression and activation after spinal cord injury. Biochim Biophys Acta 1842:2403–2412PubMedCrossRefGoogle Scholar
  13. Li D et al (2010) MicroRNA-125a/b-5p inhibits endothelin-1 expression in vascular endothelial cells. J hypertens 28:1646–1654PubMedCrossRefGoogle Scholar
  14. Li W, Chen L, Li W, Qu X, He W, He Y, Feng C, Jia X, Zhou Y, Lv J, Liang B, Chen B, Jiang J (2013) Unraveling the characteristics of microRNA regulation in the developmental and aging process of the human brain. BMC Med Genom 6(1):55CrossRefGoogle Scholar
  15. Li XQ, Lv HW, Tan WF, Fang B, Wang H, Ma H (2014a) Role of the TLR4 pathway in blood-spinal cord barrier dysfunction during the bimodal stage after ischemia/reperfusion injury in rats. J Neuroinflamm 11:62CrossRefGoogle Scholar
  16. Li XQ, Wang J, Fang B, Tan WF, Ma H (2014b) Intrathecal antagonism of microglial TLR4 reduces inflammatory damage to blood-spinal cord barrier following ischemia/reperfusion injury in rats. Mol Brain 7:28PubMedPubMedCentralCrossRefGoogle Scholar
  17. Liebner S, Czupalla CJ, Wolburg H (2011) Current concepts of blood-brain barrier development. Int J Dev Biol 55:467–476PubMedCrossRefGoogle Scholar
  18. Liu Y et al (2013) A simple method for isolating and culturing the rat brain microvascular endothelial cells. Microvasc Res 90:199–205PubMedCrossRefGoogle Scholar
  19. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods (San Diego, Calif) 25:402–408CrossRefGoogle Scholar
  20. Ma YR, Ma YH (2014) MIP-1alpha enhances Jurkat cell transendothelial migration by up-regulating endothelial adhesion molecules VCAM-1 and ICAM-1. Leukemia Res 38:1327–1331CrossRefGoogle Scholar
  21. Ma M, Ma Y, Ma L (2019) MiRNA-125a-5p inhibits hepatocellular carcinoma cell proliferation and induces apoptosis by targeting TP53 regulated inhibitor of apoptosis 1 and Bcl-2-like-2 protein. Exp Ther Med 18:1196–1202Google Scholar
  22. Michinaga S, Koyama Y (2019) Dual roles of astrocyte-derived factors in regulation of blood-brain barrier function after brain damage. Int J Mol Sci 20:571PubMedCentralCrossRefPubMedGoogle Scholar
  23. Nzou G et al (2018) Human cortex spheroid with a functional blood brain barrier for high-throughput neurotoxicity screening and disease modeling. Sci Rep 8:7413PubMedPubMedCentralCrossRefGoogle Scholar
  24. Park CS, Lee JY, Choi HY, Ju BG, Youn I, Yune TY (2019) Protocatechuic acid improves functional recovery after spinal cord injury by attenuating blood-spinal cord barrier disruption and hemorrhage in rats. Neurochem Int 124:181–192PubMedCrossRefGoogle Scholar
  25. Reijerkerk A et al (2013) MicroRNAs regulate human brain endothelial cell-barrier function in inflammation: implications for multiple sclerosis. J Neurosci 33:6857–6863PubMedPubMedCentralCrossRefGoogle Scholar
  26. Robert AA, Zamzami MM (2013) Traumatic spinal cord injury in Saudi Arabia: a review of the literature. Pan Afr Med J 16:104PubMedPubMedCentralCrossRefGoogle Scholar
  27. Sharma HS (2011) Early microvascular reactions and blood-spinal cord barrier disruption are instrumental in pathophysiology of spinal cord injury and repair: novel therapeutic strategies including nanowired drug delivery to enhance neuroprotection. J Neural Transm (Vienna Austria: 1996) 118:155–176CrossRefGoogle Scholar
  28. Suarez Y, Sessa WC (2009) MicroRNAs as novel regulators of angiogenesis. Circ Res 104:442–454PubMedPubMedCentralCrossRefGoogle Scholar
  29. Tong Z, Liu N, Lin L, Guo X, Yang D, Zhang Q (2015) miR-125a-5p inhibits cell proliferation and induces apoptosis in colon cancer via targeting BCL2, BCL2L12 and MCL1. Biomed Pharmacotherapy Biomed Pharmacother 75:129–136CrossRefGoogle Scholar
  30. Turtle JD, Henwood MK, Strain MM, Huang YJ, Miranda RC, Grau JW (2019) Engaging pain fibers after a spinal cord injury fosters hemorrhage and expands the area of secondary injury. Exp Neurol 311:115–124PubMedCrossRefGoogle Scholar
  31. Varma AK, Das A, Wallace GT, Barry J, Vertegel AA, Ray SK, Banik NL (2013) Spinal cord injury: a review of current therapy, future treatments, and basic science frontiers. Neurochem Res 38:895–905PubMedPubMedCentralCrossRefGoogle Scholar
  32. Xu J et al (2013) Dissection of the potential characteristic of miRNA-miRNA functional synergistic regulations. Mol BioSyst 9:217–224PubMedCrossRefGoogle Scholar
  33. Yang J et al (2014) MicroRNA-22 targeting CBP protects against myocardial ischemia-reperfusion injury through anti-apoptosis in rats. Mol Biol Rep 41:555–561PubMedCrossRefGoogle Scholar
  34. Yano T, Torisawa T, Oiwa K (2018) AMPK-dependent phosphorylation of cingulin reversibly regulates its binding to actin filaments and microtubules. Sci Rep 8(1):15550PubMedPubMedCentralCrossRefGoogle Scholar
  35. Yu DS et al (2015) Combining bone marrow stromal cells with green tea polyphenols attenuates the blood-spinal cord barrier permeability in rats with compression spinal cord injury. J Mol Neurosci 56:388–396PubMedCrossRefGoogle Scholar
  36. Yuan J et al (2015) MiRNA-125a-5p inhibits glioblastoma cell proliferation and promotes cell differentiation by targeting TAZ. Biochem Biophys Res Commun 457:171–176PubMedCrossRefGoogle Scholar
  37. Zheng B et al (2016) Epidermal growth factor attenuates blood-spinal cord barrier disruption via PI3K/Akt/Rac1 pathway after acute spinal cord injury. J Cell Mol Med 20:1062–1075PubMedPubMedCentralCrossRefGoogle Scholar
  38. Zhou S et al (2015) MiR-21 and miR-222 inhibit apoptosis of adult dorsal root ganglion neurons by repressing TIMP3 following sciatic nerve injury. Neurosci Lett 586:43–49PubMedCrossRefGoogle Scholar
  39. Zhou Y et al (2016) Retinoic acid induced-autophagic flux inhibits ER-stress dependent apoptosis and prevents disruption of blood-spinal cord barrier after spinal cord injury. Int J Biol Sci 12:87–99PubMedPubMedCentralCrossRefGoogle Scholar
  40. Zhu GF et al (2013) miR-155 inhibits oxidized low-density lipoprotein-induced apoptosis of RAW264.7 cells. Mol Cell Biochem 382:253–261PubMedCrossRefGoogle Scholar
  41. Zhu W, Zhao Y, Xu Y, Sun Y, Wang Z, Yuan W, Du Z (2013) Dissection of protein interactomics highlights microRNA synergy. PLoS ONE 8:e63342PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of OrthopedicsJining No. 1 People’s HospitalJiningChina
  2. 2.Department of EmergencyJining No. 1 People’s HospitalJiningChina
  3. 3.Department of OrthopedicsThe First Affiliated Hospital of Jinzhou Medical UniversityJinzhouChina

Personalised recommendations