Biotechnology Letters

, Volume 41, Issue 12, pp 1391–1401 | Cite as

Selection of potential anti-adhesion drugs by in silico approaches targeted to ALS3 from Candida albicans

  • Erika Seki Kioshima
  • Cristiane Suemi Shinobu-Mesquita
  • Ana Karina Rodrigues Abadio
  • Maria Sueli Soares Felipe
  • Terezinha Inez Estivalet SvidzinskiEmail author
  • Bernard Maigret
Original Research Paper



To select potential ligands of ALS3 for drug development with anti-adhesion and/or anti-biofilm activities.


ALS3 model was considered stable by DM. The main features of protein flexibility were represented by two conformers which were used in the virtual screening. Twenty-four small molecules were selected for in vitro assays. Five of them presented the best biological activity with ability to inhibit the adhesion and C. albicans biofilm formation on abiotic surface.


To select potential ligands of ALS3 for drug development with anti-adhesion and/or anti-biofilm activities.


In silico tools application was able to select promising compounds with anti-adhesion activity, opening a new perspective of medical device treatment.


ALS3 protein Biofilm In silico approaches Candida albicans 


Supporting information

Supplementary Fig. 1


This study was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico [Grant: 236764/2012-8] and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, according to CNPq/casadinho/PROCAD [Grant: 552276/2011-1].

Compliance with ethical standards

Conflicts of interest

The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed.

Supplementary material

10529_2019_2747_MOESM1_ESM.docx (831 kb)
Supplementary file1 (DOCX 830 kb)


  1. Abadio AK, Kioshima ES, Teixeira MM, Martins NF, Maigret B, Felipe MS (2011) Comparative genomics allowed the identification of drug targets against human fungal pathogens. BMC Genom 27(12):75. CrossRefGoogle Scholar
  2. Abadio AKR, Kioshima ES, Leroux V, Martins NF, Maigret B, Felipe MS (2015) Identification of new antifungal compounds targeting thioredoxin reductase of Paracoccidioides genus. PLoS ONE 10(11):e0142926. CrossRefPubMedPubMedCentralGoogle Scholar
  3. Aoki W, Kitahara N, Miura N, Morisaka H, Kuroda K, Ueda M (2012) Profiling of adhesive properties of the agglutinin-like sequence (ALS) protein family, a virulent attribute of Candida albicans. FEMS Immunol Med Microbiol 65(1):121–124. CrossRefPubMedGoogle Scholar
  4. Basmaciyan L, Bon F, Paradis T, Lapaquette P, Dalle F (2019) Candida albicans interactions with the host: crossing the intestinal epithelial barrier. Tissue Barriers. CrossRefPubMedPubMedCentralGoogle Scholar
  5. Beautrait A, Leroux V, Chavent M, Ghemtio L, Devignes MD, Smaïl-Tabbone M, Cai W, Shao X, Moreau G, Bladon P, Yao J, Maigret B (2008) Multiple-step virtual screening using VSM-G: overview and validation of fast geometrical matching enrichment. J Mol Model 14(2):135–148. CrossRefPubMedGoogle Scholar
  6. Chang YL, Yu SJ, Heitman J, Wellington M, Chen YL (2017) New facets of antifungal therapy. Virulence 8(2):222–236. CrossRefPubMedGoogle Scholar
  7. de Amorim AL, de Lima AVM, Rosário ACAD, Souza ÉTDS, Ferreira JV, Hage-Melim LIDS (2018) Molecular modeling of inhibitors against fructose bisphosphate aldolase from Candida albicans. Silico Pharmacol 6(1):2. CrossRefGoogle Scholar
  8. Di Pasquale N, Gowers RJ, Carbone P (2014) A multiple time step molecular dynamics algorithm for macromolecules. J Comput Chem 35(16):1199–1207. CrossRefPubMedGoogle Scholar
  9. Dong G, Liu Y, Wu Y, Tu J, Chen S, Liu N, Sheng C (2018) Novel non-peptidic small molecule inhibitors of secreted aspartic protease 2 (SAP2) for the treatment of resistant fungal infections. Chem Commun 54(96):13535–13538. CrossRefGoogle Scholar
  10. Hosseini SS, Ghaemi E, Noroozi A, Niknejad F (2019) Zinc oxide nanoparticles inhibition of initial adhesion and ALS1 and ALS3 gene expression in Candida albicans strains from urinary tract infections. Mycopathologia 184(2):261–271. CrossRefPubMedGoogle Scholar
  11. Hoyer LL, Cota E (2016) Candida albicans agglutinin-like sequence (ALS) family vignettes: a review of als protein structure and function. Front Microbiol 7:280. CrossRefPubMedPubMedCentralGoogle Scholar
  12. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14(1):33–38CrossRefGoogle Scholar
  13. Jiang W, Phillips JC, Huang L, Fajer M, Meng Y, Gumbart JC, Luo Y, Schulten K, Roux B (2014) Generalized scalable multiple copy algorithms for molecular dynamics simulations in NAMD. Comput Phys Commun 185(3):908–916. CrossRefPubMedPubMedCentralGoogle Scholar
  14. Jones G, Willett P, Glen RC, Leach AR, Taylor R (1997) Development and validation of a genetic algorithm for flexible docking. J Mol Biol 267:727–748CrossRefGoogle Scholar
  15. Khan I, Kanugala S, Shareef MA, Ganapathi T, Shaik AB, Shekar KC, Kamal A, Kumar CG (2019) Synthesis of new bis-pyrazole linked hydrazides and their in vitro evaluation as antimicrobial and anti-biofilm agents: a mechanistic role on ergosterol biosynthesis inhibition in Candida albicans. Chem Biol Drug Des. CrossRefPubMedGoogle Scholar
  16. Kullberg BJ, Arendrup MC (2015) Invasive candidiasis. N Engl J Med 373(15):1445–1456. CrossRefPubMedGoogle Scholar
  17. Lamoth F, Lockhart SR, Berkow EL, Calandra T (2018) Changes in the epidemiological landscape of invasive candidiasis. J Antimicrob Chemother 73(Suppl 1):i4–i13. CrossRefPubMedGoogle Scholar
  18. Li WS, Chen YC, Kuo SF, Chen FJ, Lee CH (2018) The impact of biofilm formation on the persistence of candidemia. Front Microbiol. 9:1196. CrossRefPubMedPubMedCentralGoogle Scholar
  19. Lin J, Oh SH, Jones R, Garnett JA, Salgado PS, Rusnakova S, Matthews SJ, Hoyer LL, Cota E (2014) The peptide-binding cavity is essential for Als3-mediated adhesion of Candida albicans to human cells. J Biol Chem 289(26):18401–18412. CrossRefPubMedPubMedCentralGoogle Scholar
  20. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (2001) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 46(1–3):3–26CrossRefGoogle Scholar
  21. Liu Y, Filler SG (2011) Candida albicans Als3, a multifunctional adhesin and invasin. Eukaryot Cell 10(2):168–173. CrossRefPubMedPubMedCentralGoogle Scholar
  22. Marc G, Araniciu C, Oniga S, Vlase L, Pîrnău A, Duma M, Măruescu L, Chifiriuc MC, Oniga O (2018) New N-(oxazolylmethyl)-thiazolidinedione active against Candida albicans biofilm: potential Als proteins inhibitors. Molecules 23(10):2522. CrossRefPubMedCentralGoogle Scholar
  23. Nobile CJ, Fox EP, Nett JE, Sorrells TR, Mitrovich QM, Hernday AD, Tuch BB, Andes DR, Johnson AD (2012) A recently evolved transcriptional network controls biofilm development in Candida albicans. Cell 148(1–2):126–138. CrossRefPubMedPubMedCentralGoogle Scholar
  24. Perlin DS, Rautemaa-Richardson R, Alastruey-Izquierdo A (2017) The global problem of antifungal resistance: prevalence, mechanisms, and management. Lancet Infect Dis 17:e383–e392. CrossRefPubMedGoogle Scholar
  25. Pfaller MA, Diekema DJ, Turnidge JD, Castanheira M, Jones RN (2019) Twenty years of the SENTRY antifungal surveillance program: results for Candida species from 1997–2016. Open Forum Infect Dis 6(Suppl 1):S79–S94. CrossRefPubMedPubMedCentralGoogle Scholar
  26. Phua AI, Hon KY, Holt A, O'Callaghan M, Bihari S (2019) Candida catheter-related bloodstream infection in patients on home parenteral nutrition: rates, risk factors, outcomes, and management. Clin Nutr ESPEN 31:1–9. CrossRefPubMedGoogle Scholar
  27. Quindós G, Marcos-Arias C, San-Millán R, Mateo E, Eraso E (2018) The continuous changes in the aetiology and epidemiology of invasive candidiasis: from familiar Candida albicans to multi resistant Candida auris. Int Microbiol 21(3):107–119. CrossRefPubMedGoogle Scholar
  28. Rodrigues-Vendramini FAV, Faria DR, Arita GS, Capoci IRG, Sakita KM, Caparroz-Assef SM, Becker TCA, Bonfim-Mendonça PS, Felipe M, Svidzinski TIE, Maigret B, Kioshima ES (2019) Antifungal activity of two oxadiazole compounds for the paracoccidioidomycosis treatment. PLOS Negl Trop Dis 13(6):e0007441. CrossRefPubMedPubMedCentralGoogle Scholar
  29. Rozada AM, Rodrigues FA, Sampiron EG, Seixas FA, Basso EA, Scodro RB, Kioshima ES, Gauze GF (2019) Novel 4-methoxynaphthalene-N-acylhydrazones as potential for paracoccidioidomycosis and tuberculosis co-infection. Future Microbiol 14:587–598. CrossRefPubMedGoogle Scholar
  30. Salci TP, Negri M, Abadio AKR, Bonfim-Mendonça P, Capoci I, Caparroz-Assef SM, Donatti L, Felipe MS, Kioshima ES, Svidzinski TI (2017) A new small-molecule KRE2 inhibitor against invasive Candida parapsilosis infection. Future Microbiol 12:1283–1295. CrossRefPubMedGoogle Scholar
  31. Salgado PS, Yan R, Taylor JD, Jones R, Hoyer LL, Matthews SJ, Simpson PJ, Cota E (2011) Structural basis for the broad specificity to host-cell ligands by the pathogenic fungus Candida albicans. Proc Natl Acad Sci USA 108(38):15775–15779. CrossRefPubMedGoogle Scholar
  32. Semenyuta IV, Kobzar OL, Hodyna DM, Brovarets VS, Metelytsia LO (2019) In silico study of 4-phosphorylated derivatives of 1,3-oxazole as inhibitors of Candida albicans fructose-1,6-bisphosphate aldolase II. Heliyon 5(4):e01462. CrossRefPubMedPubMedCentralGoogle Scholar
  33. Shao J, Tanner SW, Thompson N, Cheatham TE (2007) Clustering molecular dynamics trajectories: 1. Characterizing the performance of different clustering algorithms. J Chem Theory Comput. 3(6):2312–2334. CrossRefPubMedGoogle Scholar
  34. Silva DR, Sardi JCO, Freires IA, Silva ACB, Rosalen PL (2019) In silico approaches for screening molecular targets in Candida albicans: a proteomic insight into drug discovery and development. Eur J Pharmacol 5(842):64–69. CrossRefGoogle Scholar
  35. Stierand K, Maass PC, Rarey M (2006) Molecular complexes at a glance: automated generation of two-dimensional complex diagrams. Bioinformatics 22(14):1710–1716. CrossRefPubMedGoogle Scholar
  36. Tascini C, Sozio E, Corte L, Sbrana F, Scarparo C, Ripoli A, Bertolino G, Merelli M, Tagliaferri E, Corcione A, Bassetti M, Cardinali G, Menichetti F (2018) The role of biofilm forming on mortality in patients with candidemia: a study derived from real world data. Infect Dis 50(3):214–219. CrossRefGoogle Scholar
  37. Wall G, Montelongo-Jauregui D, Vidal Bonifacio B, Lopez-Ribot JL, Uppuluri P (2019) Candida albicans biofilm growth and dispersal: contributions to pathogenesis. Curr Opin Microbiol 11(52):1–6. CrossRefGoogle Scholar
  38. Webb BJ, Ferraro JP, Rea S, Kaufusi S, Goodman BE, Spalding J (2018) Epidemiology and clinical features of invasive fungal infection in a US Health Care Network. Open Forum Infect Dis 5(8):187. CrossRefGoogle Scholar
  39. Wilson D, Naglik JR, Hube B (2016) The missing link between Candida albicans hyphal morphogenesis and host cell damage. PLoS Pathog 12(10):e1005867. CrossRefPubMedPubMedCentralGoogle Scholar
  40. Zarnowski R, Sanchez H, Covelli AS, Dominguez E, Jaromin A, Bernhardt J, Mitchell KF, Heiss C, Azadi P, Mitchell A, Andes DR (2018) Candida albicans biofilm-induced vesicles confer drug resistance through matrix biogenesis. PLoS Biol 16(10):e2006872. CrossRefPubMedPubMedCentralGoogle Scholar
  41. Zhao X, Daniels KJ, Oh SH, Green CB, Yeater KM, Soll DR, Hoyer LL (2006) Candida albicans Als3p is required for wild-type biofilm formation on silicone elastomer surfaces. Microbiology 152(Pt 8):2287–2299. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Erika Seki Kioshima
    • 1
  • Cristiane Suemi Shinobu-Mesquita
    • 1
  • Ana Karina Rodrigues Abadio
    • 2
  • Maria Sueli Soares Felipe
    • 3
  • Terezinha Inez Estivalet Svidzinski
    • 1
    • 5
    Email author
  • Bernard Maigret
    • 4
  1. 1.Departamento Análises Clínicas e BiomedicinaUniversidade Estadual de MaringáMaringáBrazil
  2. 2.Faculdade de Ciências Sociais Aplicadas e AgráriasUniversidade Do Estado de Mato Grosso - Campus de Nova MutumNova MutumBrazil
  3. 3.Laboratório Biologia Molecular, Departamento de Biologia Celular, Instituto de Ciências BiológicasUniversidade de BrasíliaBrasíliaBrazil
  4. 4.LORIALorraine UniversityNancyFrance
  5. 5.Laboratório de Ensino e Pesquisa em Análises Clínicas, Departamento de Análises ClínicasUniversidade Estadual de MaringáMaringáBrazil

Personalised recommendations