Advertisement

Biotechnology Letters

, Volume 41, Issue 12, pp 1403–1413 | Cite as

Bioremediation of highly toxic arsenic via carbon-fiber-assisted indirect As(III) oxidation by moderately-thermophilic, acidophilic Fe-oxidizing bacteria

  • Naoko OkibeEmail author
  • Yuken Fukano
Original Research Paper
  • 84 Downloads

Abstract

Objective

To enable removal of highly toxic As(III) from acidic waters by inducing indirect microbial As(III) oxidation by Fe-oxidizing bacteria via carbon-assisted redox-coupling between As(III) oxidation and Fe3+ reduction.

Results

Carbon-fiber (CF) was shown to function as an electron-mediator to catalyze chemical (abiotic) redox-coupling between As(III) oxidation and Fe3+ reduction. Accordingly, by taking advantage of Fe3+ regeneration by Fe-oxidizing bacteria, it was possible to promote oxidative removal of As(III) as ferric arsenate at moderate temperature. This reaction can be of use under the situation where a high-temperature treatment is not immediately available. Arsenic once concentrated as ferric arsenate on carbon-fibers can be collected to undergo phase-transformation to crystalline scorodite as the next re-solubilization/re-crystallization step at a higher temperature (70 °C).

Conclusions

While extremely acidophilic Fe-oxidizing bacteria are widely found in nature, the As-oxidizing counterparts, especially those grown on moderately-thermophilic and mesophilic temperatures, are hardly known. In this regard, the finding of this study could make a possible introduction of the semi-passive, low-temperature As-treatment using readily available Fe-oxidizing bacteria.

Keywords

Bioremediation Arsenic As(III) Oxidation Scorodite Acidophile Fe-oxidizing bacteria Carbon-fiber 

Notes

Acknowledgements

This work was supported by JX Nippon Mining & Metals. The XAFS experiments were performed at the SAGA Light Source (Kyushu University Beam Line; BL06, No. 2014IIK025). Acidiplasma sp. Fv-Ap was kindly provided by Prof. D. B. Johnson (Bangor University, UK).

References

  1. Barrett J, Ewart DK, Hughes MN, Poole RK (1993) Chemical and biological pathways in the bacterial oxidation of arsenopyrite. FEMS Microbiol Rev 11:57–62CrossRefGoogle Scholar
  2. Battaglia-Brunet F, El Achbouni H, Quemeneur M, Hallberg KB, Kelly DP, Joulian C (2011) Proposal that the arsenite-oxidizing organisms Thiomonas cuprina and 'Thiomonas arsenivorans' be reclassified as strains of Thiomonas delicata, and emended description of Thiomonas delicata. Int J Syst Evol Microbiol 61:2816–2821CrossRefGoogle Scholar
  3. Bogdanova TI, Tsaplina IA, Kondrat’eva TF, Duda VI, Suzina NE, Melamud VS, Tourova TP, Karavaiko GI (2006) Sulfobacillus thermotolerans sp. nov., a thermotolerant, chemolithotrophic bacterium. Int J Syst Evol Microbiol 56:1039–1042CrossRefGoogle Scholar
  4. Cavalca L, Corsini A, Zaccheo P, Andreoni V, Muyzer G (2013) Microbial transformations of arsenic: perspectives for biological removal of arsenic from water. Future Microbiol 8:753–768CrossRefGoogle Scholar
  5. Clark DA, Norris PR (1996) Acidimicrobium ferrooxidans gen. nov., sp. nov.: mixed-culture ferrous iron oxidation with Sulfobacillus species. Microbiol UK 142:785–790CrossRefGoogle Scholar
  6. Clum A, Nolan M, Lang E, Glavina Del Rio T, Tice H, Copeland A, Cheng JF, Lucas S, Chen F, Bruce D, Goodwin L, Pitluck S, Ivanova N, Mavrommatis K, Mikhailova N, Pati A, Chen A, Palaniappan K, Göker M, Spring S, Land M, Hauser L, Chang YJ, Jeffries CC, Chain P, Bristow J, Eisen JA, Markowitz V, Hugenholtz P, Kyrpides NC, Klenk HP, Lapidus A (2009) Complete genome sequence of Acidimicrobium ferrooxidans type strain (ICP). Stand Genomic Sci 1:38–45CrossRefGoogle Scholar
  7. Cullen WR, Reimer KJ (1989) Arsenic speciation in the environment. Chem Rev 89:713–764CrossRefGoogle Scholar
  8. Demopoulos GP, Droppert DJ, Van Weert G (1995) Precipitation of crystalline scorodite (FeAsO4·2H2O) from chloride solutions. Hydrometallurgy 38:245–261CrossRefGoogle Scholar
  9. Dopson M, Baker-Austin C, Koppineedi PR, Bond PL (2003) Growth in sulfidic mineral environments: metal resistance mechanisms in acidophilic micro-organisms. Microbiology 149:1959–1970CrossRefGoogle Scholar
  10. Ehrlich HL, Newman DK (2009) Geomicrobiology, 5th edn. CRC Press, Boca RotonGoogle Scholar
  11. Filippou D, Demopoulos GP (1997) Arsenic immobilization by controlled scorodite precipitation. JOM 49:52–55CrossRefGoogle Scholar
  12. Fujita T, Taguchi R, Kubo H, Shibata E, Nakamura T (2009) Immobilization of arsenic from novel synthesized scorodite—analysis on solubility and stability. Mater Trans 50:321–331CrossRefGoogle Scholar
  13. Fukano Y, Hirajima T, Sasaki K, Okibe N (2015) Mechanism of indirect chemical oxidation of highly toxic As(III), in the presence of carbon fiber via direct microbial Fe(II) oxidation. Proc Int Symp Earth Sci Technol 2015:163–165Google Scholar
  14. Gonzalez-Contreras P, Weijma J, Weijden RVD, Buisman CJN (2010) Biogenic scorodite crystallization by Acidianus sulfidivorans for arsenic removal. Environ Sci Technol 44:675–680CrossRefGoogle Scholar
  15. Gonzalez-Contreras P, Weijma J, Buisman CJN (2012) Continuous bioscorodite crystallization in CSTRs for arsenic removal and disposal. Water Res 46:5883–5892CrossRefGoogle Scholar
  16. Hotta Y, Hirajima T, Sasaki K, Okibe N (2017) Activated carbon-assisted oxidation and immobilization of highly toxic arsenite. Int Symp Earth Sci Technol 2017:380–381Google Scholar
  17. Kamde K, Pandey RA, Thul ST, Dahake R, Shinde VM, Bansiwal A (2018) Microbially assisted arsenic removal using Acidothiobacillus ferrooxidans mediated by iron oxidation. Environ Technol Inno 10:78–90CrossRefGoogle Scholar
  18. Langmuir D, Mahoney J, Rowson J (2006) Solubility products of amorphous ferric arsenate and crystalline scorodite (FeAsO4·2H2O) and their application to arsenic behavior in buried mine tailings. Geochim Cosmochim Acta 70:2942–2956CrossRefGoogle Scholar
  19. Mandal BK, Suzuki KT (2002) Arsenic round the world: a review. Talanta 58:201–235CrossRefGoogle Scholar
  20. Manocha SM (2003) Porous carbons. Sadhana 28:335–348CrossRefGoogle Scholar
  21. Matschullat J (2000) Arsenic in the geosphere—a review. Sci Total Environ 249:297–312CrossRefGoogle Scholar
  22. Melamud VS, Pivovarova TA, Tourova TP, Kolganova TV, Osipov GA, Lysenko AM, Kondrat’eva TF, Karavaiko GI (2003) Sulfobacillus sibiricus sp. nov., a new moderately thermophilic bacterium. Microbiology 72:605–612CrossRefGoogle Scholar
  23. Minus ML, Kumar S (2005) The processing, properties, and structure of carbon fibers. JOM 57:52–58CrossRefGoogle Scholar
  24. Monhemius AJ, Swash PM (1999) Removing and stabilizing As from copper refining circuits by hydrothermal processing. JOM 51:30–33CrossRefGoogle Scholar
  25. Nakazawa H, Hareyama W (2007) Biological oxidation of arsenite in strong acid water. Res Process 54:182–186CrossRefGoogle Scholar
  26. Okibe N, Koga M, Sasaki K, Hirajima T, Heguri S, Asano S (2013) Simultaneous oxidation and immobilization of arsenite from refinery waste water by thermoacidophilic iron-oxidizing archaeon, Acidianus brierleyi. Miner Eng 48:126–134CrossRefGoogle Scholar
  27. Okibe N, Koga M, Morishita S, Tanaka M, Heguri S, Asano S, Sasaki K, Hirajima T (2014) Microbial formation of crystalline scorodite for treatment of As(III)-bearing copper refinery process solution using Acidianus brierleyi. Hydrometallurgy 143:34–41CrossRefGoogle Scholar
  28. Okibe N, Morishita S, Tanaka M, Sasaki K, Hirajima T, Hatano K, Ohata A (2017) Bioscorodite crystallization using Acidianus brierleyi: effects caused by Cu(II) present in As(III)-bearing copper refinery wastewaters. Hydrometallurgy 168:121–126CrossRefGoogle Scholar
  29. Packwood RH, Brown JD (1981) A Gaussian expression to describe ϕ(ρz) curves for quantitative electron probe microanalysis. X-Ray Spectrom 10:138–146CrossRefGoogle Scholar
  30. Riveros PA, Dutrizac JE, Spencer P (2001) Arsenic disposal practices in the metallurgical industry. Can Metall Q 40:395–420CrossRefGoogle Scholar
  31. Singhania S, Wang Q, Filippou D, Demopoulos GP (2006) Acidity, valency and third-ion effects on the precipitation of scorodite from mixed sulfate solutions under atmospheric-pressure conditions. Metall Mater Trans B 37:189–197CrossRefGoogle Scholar
  32. Tanaka M, Okibe N (2018) Factors to enable crystallization of environmentally stable bioscorodite from dilute As(III)-contaminated waters. Minerals 8:23CrossRefGoogle Scholar
  33. Vega-Hernandez S, Weijma J, Buisman CJN (2019) Immobilization of arsenic as scorodite by a thermoacidophilic mixed culture via As(III)-catalyzed oxidation with activated carbon. J Hazard Mater 368:221–227CrossRefGoogle Scholar
  34. Wakao N, Nagasawa N, Matsuura T, Matsukura H, Matsumoto T, Hiraishi A, Sakurai Y, Shiota H (1994) Acidiphilium multivorum sp. nov., an acidophilic chemoorganotrophic bacterium from pyritic acid mine drainage. J Gen Appl Microbiol 40:143–159CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Earth Resources Engineering, Faculty of EngineeringKyushu UniversityFukuokaJapan

Personalised recommendations